

FTIR for Thermal Damage Inspection on Composite Aircraft

30 August 2022

Presented to: Joint Technology Exchange Group (JTEG) Presented by: Justin Massey

Use and Disclosure

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited, as submitted under NAVAIR Public Release Authorization 16-0003.

Problem

- Since 1970, the USN has been flying aircraft fabricated with advanced polymer matrix composite (PMC) materials. During aircraft operation thermal events occur and damage the PMC components.
- Two types of damage to the PMC material occur:
 - Incipient Damage (undetectable) Change in polymer chemistry due to thermal exposure resulting in mechanical property loss.
 - Physical Damage (detectable) Visual and NDT used for inspection.
- Could not quantify undetectable thermal damage and has resulted in estimated millions of dollars of scrapped aircraft components.

Previous Thermal Damage Inspection Process

- Previously the heat damage evaluation criteria does not inspect for incipient heat damage. This results in very conservative repairs or most often a scrapped part.
- The current heat damage evaluation criteria is:
 - Visual inspection of top coat.
 - Visual inspection of primer.
 - Barcol hardness readings of composite material.
 - Ultrasonic inspection for physical damage (delams, etc.)
 - Visual inspection and hardness readings of surrounding metallic structure.

Incipient Heat Damage

PEPET READINESS CENTER VOLTIPEST DI CENTREST

Solution: Handheld FT-IR

- FITR: Fourier Transform Infrared Spectrometry
 - Mid-IR Spectral Surface Analysis
 - Excites molecules with Infrared Light with vibrations measured to determine surface composition.
- Agilent Technologies Flexscan 4200 FTIR
 - Portable diffuse reflectance FTIR unit.
 - Will be used to determine surface chemical composition changes due to heat damage.
 - Surface chemical composition changes will be correlated with mechanical test results for Flexscan calibration.
 - Boeing Commercial has developed this technology for 787 Dreamliner.

FT-IR Calibration

- Calibrations were made for carbon fiber/epoxy composite materials systems.
- Short Beam Shear (SBS) test coupons were fabricated to use for spectra collection and mechanical test data.
- SBS coupons were thermally exposed between 375-550°F in 25°F increments with a double sided NIST traceable process.
- All coupons were sanded to remove paint and primer prior to sampling.

Calibration Development

Raw Data

Processed Data

- Each material calibration method was created using 200 separate spectra.
- Frequency range = 2000-750 cm⁻¹
- Preprocessing of spectra performed using: Mean centered, Savitzky-Golay derivative.
- Partial Least Squares regression method used for calibration and validation.
 - 200 more separate spectra used for validation.
- Predicted exposure temperature vs. actual exposure temperature plotted.
- Methods evaluated by correlation factor (R²), percent error, and RMS error.
 - Less than 4% error for all materials.

FT-IR Software

MicroLab						
Instrument Battery: 92 minutes User: Matlab 43440 Statu Method: MMS 519 NAVAIR Thermal Damage Deter	_	User: Matiab Result: wrong s	43440 sample 1_2014-02-05T08-48-51			
ptional) Sample wrong sample 1		Part Number				
ptional)	Res	ults:				
	Narr	2	Value	Low Threshold	High Thre	
Hold the FlexScan steady against the	Vien Este Nytern Nytern Nytern	northeast entropy Oil Additive (1°F) (MMS 519 Sanded Tape; carbons Abs tance	The sample does not match the castriation. (Marginal) 0.19 (Marginal) 416 2.75 The M-Cristance is greater than 12		0.2 450 2.4	
Sample Alignment Che						
Home Next >	N 2	Home	Data Handling Details Params I	Results	R2	
		- Agilent Technologies				

- An alignment bar was incorporated to ensure Flexscan is properly aligned with fiber direction during reading.
- Calibration includes a component to determine if the surface is contaminated.
- Mahalanobis distance was included to determine if the correct material calibration was used.
- Calibration will be uploaded with incipient heat damage temperature to determine good/bad cutoff.

Mechanical Testing

- SBS was chosen because it is a resin dominated test.
 - Compared to other mechanical tests.
- All testing was completed at room temperature for all C/Ep composite materials.
- 5-10 coupons were tested for each sample set.
- A 1.5in x 0.5in x 0.25in thick coupon was used per ASTM D2344.
- Quasi-isotropic lay-up was used for each material system.

Material Properties

Short Beam Shear Test Results	Material	Incipient Heat Damage Temperature	Physical Damage Temperature
40 0.70	Uni-1	397°F	525°F
	Woven-2	439°F	525°F
	Uni-3	416°F	550°F
0.10	Uni-4	393°F	550°F
0.00 0 25 50 75 100 125 150 175 200 225 250 275 300 Heat Damage Temperature (°C)	Woven-5	450°F	525°F

- Onset of incipient heat damage temperature was determined from SBS data.
 - Incipient heat damage was determined when reduction in shear strength was approximately 10%.
 - 10% reduction was determined from plotting the lower bound of the standard deviation of SBS normalized strength vs. heat damage temperature.
- Onset of physical damage for each material was determined by ultrasonic pulse-echo A-scan of each coupon prior to testing.
- Validation completed with different time/temperatures.

Adoption as a Solution

- FT-IR has been adopted by USN since 2015 to inspect Carbon/Epoxy composite for incipient thermal damage.
- Used as a solution for 3 different aircraft programs.
 - Over \$60M savings in aircraft and component repair.
- Currently being developed for 3 more aircraft programs.
- NAVAIR National WG developed to expand technology.
- Now used as a workhorse technology to provide inspection of thermal damage on composites

Application Example: Engine Fire on a V-22

- Fire event caused obvious visual damage to the RH nacelle and all its components which were scrapped.
- Due to proximity to the fire, the wing skin needed to be evaluated for incipient heat damage.
- FT-IR was used to evaluate the wing skin in about 5 hours and found no damage.
- Without availability of FT-IR the wing would have been scrapped for an estimated cost of \$10 million.

Future Work

- Challenge: Current FT-IR is no longer supported by OEM.
- New FT-IR being developed as a drop in replacement.
 - Agilent 4300 Handheld FTIR
- Thermal Damage National WG developing an guidance document on how to create calibration methods.
- FRCSW developing thermal damage inspection courses for composites & metals.
 - Overview course: for Engineers and Managers
 - Inspectors course: to train new thermal damage inspector for inservice aircraft.
- Develop a ruggedized version of the handheld 4300 FT-IR unit.

4200 FTIR

Conclusions

- Navy has created a Thermal Damage inspection methodology that incorporates new and legacy NDI techniques.
- FTIR calibration method were created for carbon/epoxy PMC material systems.
 - Less than 4% error on all calibrations.
- FTIR was adopted as the primary method for inspecting incipient thermal damage on aircraft carbon/epoxy PMC materials.
- Further development being completed to increase breadth of technology for different materials and aircraft programs.
 - Gen 3 FTIR being developed to replace old technology.