

## Continuous Environment and Corrosivity Monitoring for Improved Materials Selection and Asset Management Presentation for the Joint Technology Exchange Group

**Fritz Friedersdorf**, Senior Technical Fellow Luna Labs USA Charlottesville USA

fritz.friedersdorf@lunalabs.us

27 September 2022 | lunalabs.us

## Luna Labs USA – a specialty products and technology development company

### Who we are

- **1990** founded as applied research division of Luna Innovations Inc
- 2022 became independent and privately held
- Headquartered in Charlottesville, VA
- Approximately 90 people
- Multi-disciplinary; development teams in systems engineering, materials chemistry, and biotechnology
- Technology partner to industry and defense organizations

### Markets

- Defense
- Aerospace
- Automotive
- Clean Energy
- Sustainable Manufacturing
- Healthcare
- Emergency Services

### Focus Areas

- Corrosion Monitoring Solutions
- Asset Management and Diagnostics
- Specialty Materials and Polymers
- Industrial Decarbonization
- Sustainable Materials
- Medical Simulation
- Biomedical Devices and Wearables
- Biomedical Materials



## Corrosion Technology BU

### **Product Line**

### Corrosion Monitoring Solutions

### **Test and Measurement**

laboratory, outdoor, and on-board evaluations to enhance confidence and performance

#### Maintenance

on-board monitoring to inform corrosion maintenance



### Applied Research

### Measurement Development

real-time continuous monitoring

#### Materials & Corrosion Research

material performance and corrosion severity classification

#### Modeling & Analytics

design, corrosion diagnostics, and prognostics



## Opportunities for Improved Corrosion Prevention and Control

#### Adopting new protective coatings and materials

- 10 -15 years to introduce new aerospace coating
- Inadequate performance tests
  - Variability
  - Poor discrimination
- Testing does not quantify failure modes of greatest concern
  - Galvanic corrosion
  - Environment assisted cracking

#### Implementing preventative maintenance practices

- Challenge to quantify the benefits of new practices
  - Covers, hangers, washing, sealing, and dehumidification

### Managing individual aircraft corrosion throughout O&S

- Conservative inspection intervals reduce aircraft availability
- Unexpected damage occurs from undetected corrosion

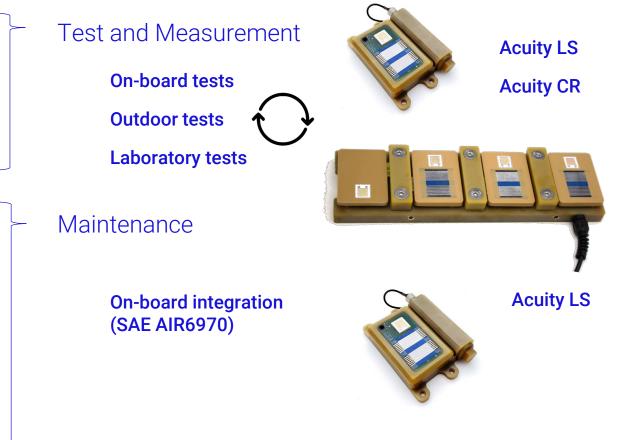
### - Test and Measurement

Maintenance



## How Luna Labs is making an impact

#### Adoption of **new protective coatings and materials**


- Expedite testing and qualification (AMPP TM21449-2021)
- Increase confidence in predicted performance
- Validate performance and manage risks using on-board tests

### Implementing preventative maintenance practices

Quantify benefits using on-board measurements

# Managing **individual aircraft corrosion** throughout O&S phase

- Optimize inspection intervals
- Detect high corrosion severity conditions
- Track impact of basing and operations





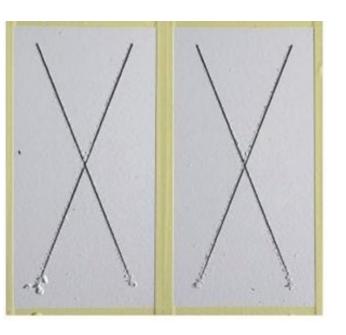
### **Corrosion Monitoring Solutions**

### Test & Measurement: Coating Performance



## Performance testing of chromate vs non-chromate primers

| Primer 🔶                                                                                                                                                    | Chromate SB-Cr-1                                           | Chromate SB-Cr-2                                           | Non-Chromate SB-NC                                       | Non-Chromate WB-NC                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Test 🖌                                                                                                                                                      | MIL-PRF-23377<br>Type I, Class C2<br>Solvent Borne Epoxy   | MIL-PRF-23377<br>Type I, Class C2<br>Solvent Borne Epoxy   | MIL-PRF-23377<br>Type I, Class N<br>Solvent Borne Non-Cr | MIL-PRF-85582<br>Type I, Class N<br>Water Borne Non-Cr    |
| <ul> <li>Onboard</li> <li>Interior of HH-60G aircraft</li> <li>300-day test at severe base location</li> <li>Two positions; belly and transition</li> </ul> | Pretreat: Chromate (Cr <sup>+6</sup> )<br>Topcoat: PU QPD  |                                                            | ✓ Pretreat: Trichrome (Cr⁺³) Topcoat: PU QPD             |                                                           |
| <ul> <li>Outdoor</li> <li>Battelle Florida Research Facility</li> <li>130-day test, sheltered</li> <li>Duplicate measurements</li> </ul>                    | Pretreat: Chromate (Cr+6)<br>Topcoat: PU QPD               |                                                            | ✓ Pretreat: Trichrome (Cr⁺³) Topcoat: PU QPD             |                                                           |
| <ul> <li>Laboratory</li> <li>Three laboratory round-robin</li> <li>GMW-14872 cyclic corrosion test</li> <li>Triplicate measurements</li> </ul>              | Pretreat: Trichrome (Cr <sup>+3</sup> )<br>Topcoat: PU QPD | Pretreat: Trichrome (Cr <sup>+3</sup> )<br>Topcoat: PU QPD | ✓ Pretreat: Trichrome (Cr⁺³) Topcoat: PU QPD             | ✓ Pretreat: Trichrome (Cr <sup>+3</sup> ) Topcoat: Pu QPD |



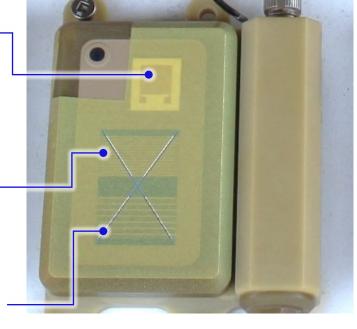

## Continuous, quantitative sensor measurements

Legacy Methods



Visual rating of scribe creep and corrosion products




**Acuity Measurements** 

BARRIER Coating conductance Rate (µS) Cumulative (C/V)

CORROSION Free corrosion rate Current (µA) Cumulative (C)

GALVANIC CORROSION Galvanic corrosion rate Current (µA)

Cumulative (C)





## Acuity LS and CR systems for coatings performance

#### Acuity LS



TEMPERATURE & \_\_\_\_\_\_

BARRIER Coating conductance Rate (µS) Cumulative (C/V)

CORROSION Free corrosion rate Current (µA) Cumulative (C)

### GALVANIC CORROSION

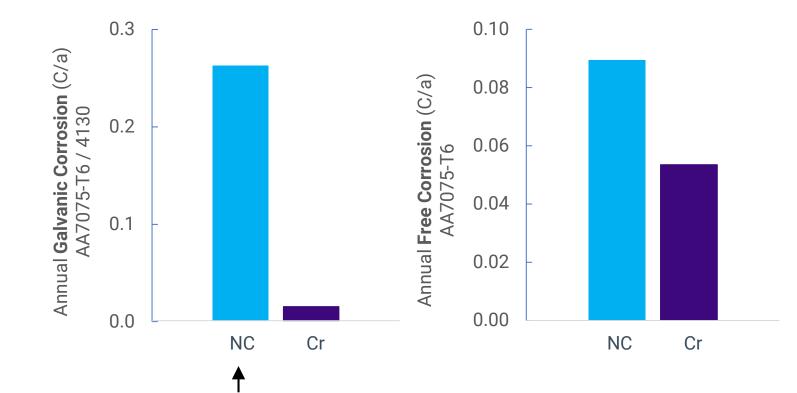
Galvanic corrosion rate Current (µA) Cumulative (C)

5

Pretreat, paint, and process sensor panel per standard techniques



## On-board Coating Performance


#### **Non-chromate SB-NC**

| Primer:       | MIL-PRF-23377K Type 1 Class N    |
|---------------|----------------------------------|
|               | Non-chromate solvent borne epoxy |
| Pretreatment: | MIL-DTL-5541                     |
|               | Trichrome conversion coating     |
| Chromate SB-C | r-1                              |
| D             |                                  |

| Primer:       | MIL-PRF-23377 Type 1, Class 2 |
|---------------|-------------------------------|
|               | Solvent-borne epoxy           |
| Pretreatment: | MIL-DTL-5541 Class1A          |
|               | Chromate conversion coating   |



UNALABS



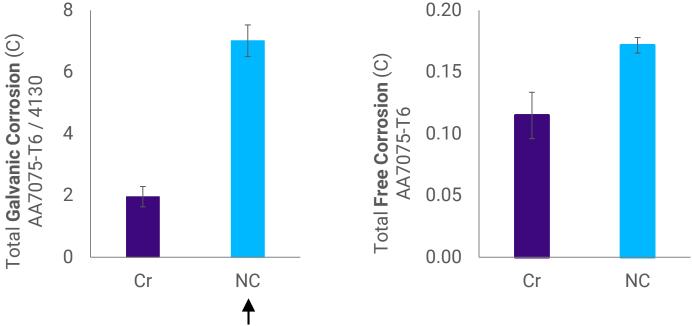
Largest difference in non-chromate and chromate coating performance is associated with galvanic corrosion protection

300-day test on HH-60G Belly and transition installations

## Outdoor Coating Performance

#### Non-chromate SB-NC

MIL-PRF-23377K Type 1 Class N Primer: Non-chromate solvent borne epoxy Pretreatment: MIL-DTL-5541 Trichrome conversion coating **Chromate SB-Cr-1** 

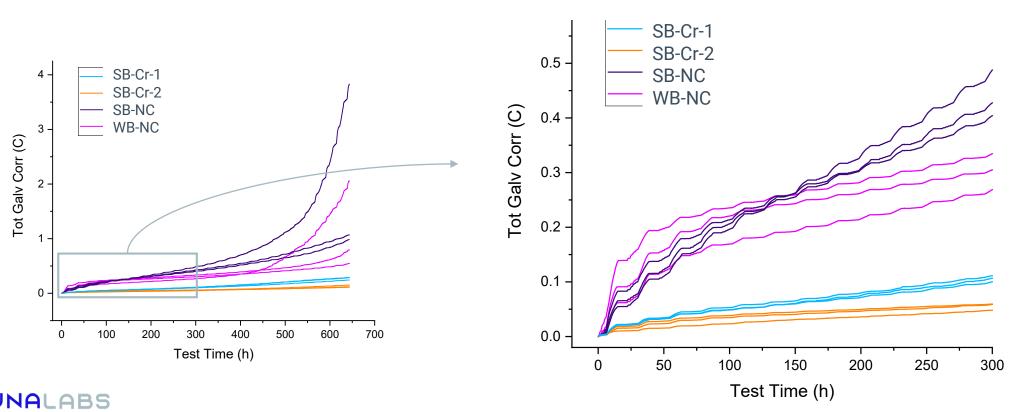

| Primer:       | MIL-PRF-23377 Type 1, Class 2 |
|---------------|-------------------------------|
|               | Solvent-borne epoxy           |
| Pretreatment: | MIL-DTL-5541 Class1A          |
|               | Chromate conversion coating   |



UNALABS

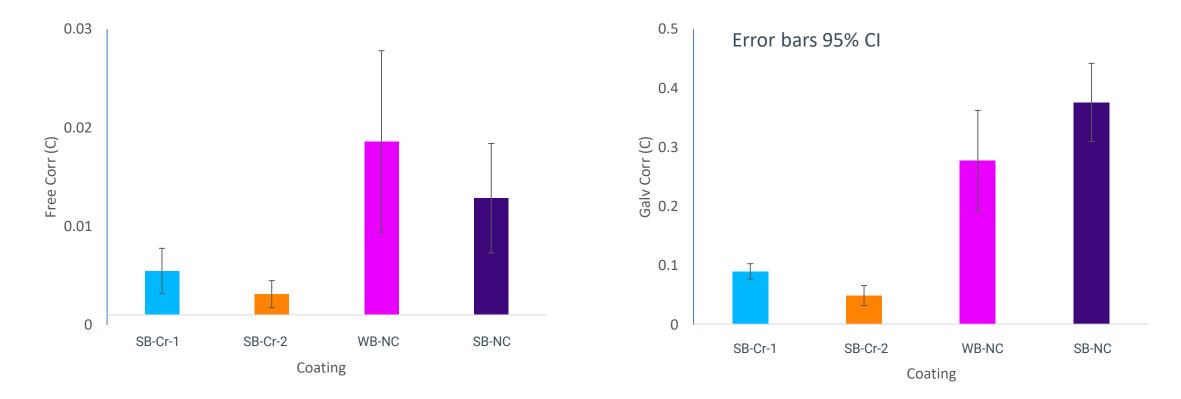


Largest difference in non-chromate and chromate coating performance is associated with galvanic corrosion protection




## Laboratory Coating Performance: Total galvanic corrosion

Measurement of galvanic corrosion rate for approximately 25 cycles of GMW-14872 cyclic corrosion test with triplicate measurements for each coating system


- Change in protective properties of non-chromate coatings apparent after 400 hours
- Galvanic corrosion performance separation of coatings apparent within 100 hours

Acuity CR



## Free and galvanic corrosion at 250 Hours: Lab-A

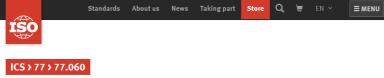
- Significant free corrosion and galvanic corrosion separation in non-chromate and chromate coating performance
- Significant separation in galvanic corrosion between the two qualified chromate coatings





## Industry adoption

Develop, demonstrate, and standardize advanced measurement methods for assessing coating performance


- Produce electrochemical sensors and data collection system for rapid, accurate characterization of coating performance
- Demonstrate capability in interlaboratory tests, outdoor exposures, and on-board aircraft
- ✓ Publish U.S. national standard test method
- Establish coating performance requirements based on metrics defined in the standard test method
- Adopt measurements and requirements within aerospace performance specifications



AMPP TM21449-2021, Continuous Measurements for Determination of Aerospace Coating Protective Properties



Atmospheric Corrosion Monitoring Informational Report AIR6970



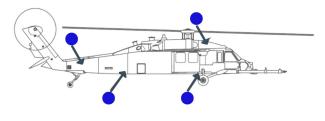
ISO 22858:2020

Corrosion of metals and alloys — Electrochemical measurements — Test method for monitoring atmospheric corrosion



### **Corrosion Monitoring Solutions**

### Maintenance: On-board Integration




## U.S. Navy Value Proposition for CH-53K Fleet of 200

Navy's ROI analysis for integrating Luna Labs monitoring devices with vehicle health management system (IVHMS)

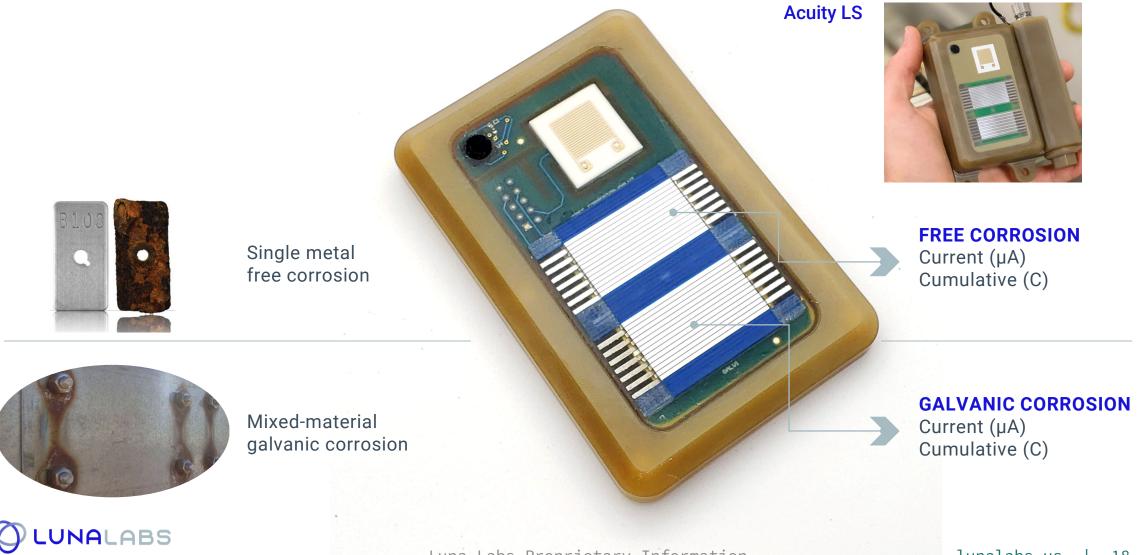
- 250,000 reduced maintenance man hours during service life of fleet
- For 60% of the fleet, double wash cycles from 14 to 28 days
- For 60% of the fleet, **extend inspection cycle time** by 10%

Tracking corrosivity and environment spectra within an airframe





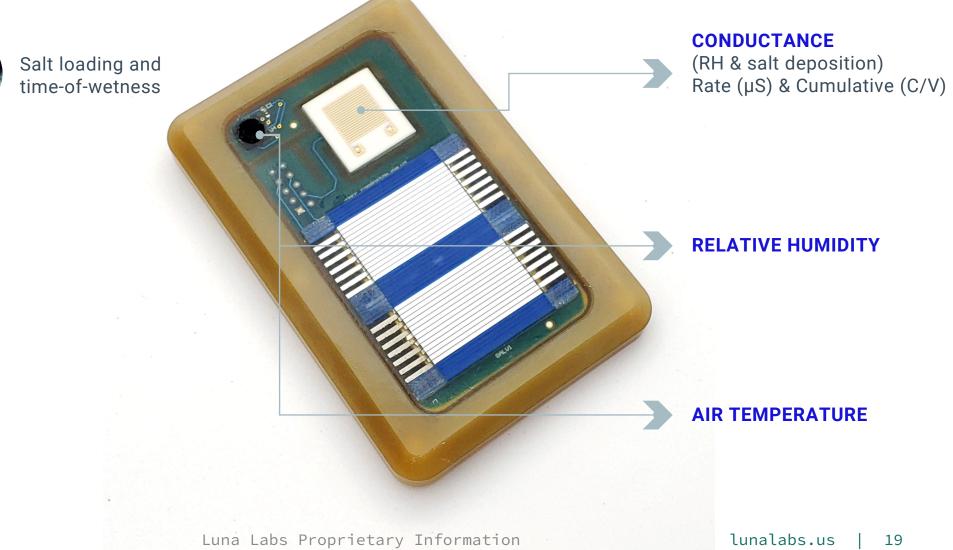



## Netherlands Royal Air Force Recognizes Savings when Deferring Inspections for NH-90s

- Netherlands Aerospace Research Laboratory (NLR) is using Luna Labs corrosion monitoring systems to defer corrosion inspections
- \$200,000+ savings by deferring a single corrosion inspection until a scheduled maintenance inspection
- Increased availability






## Continuous, Quantitative Measure of Corrosivity



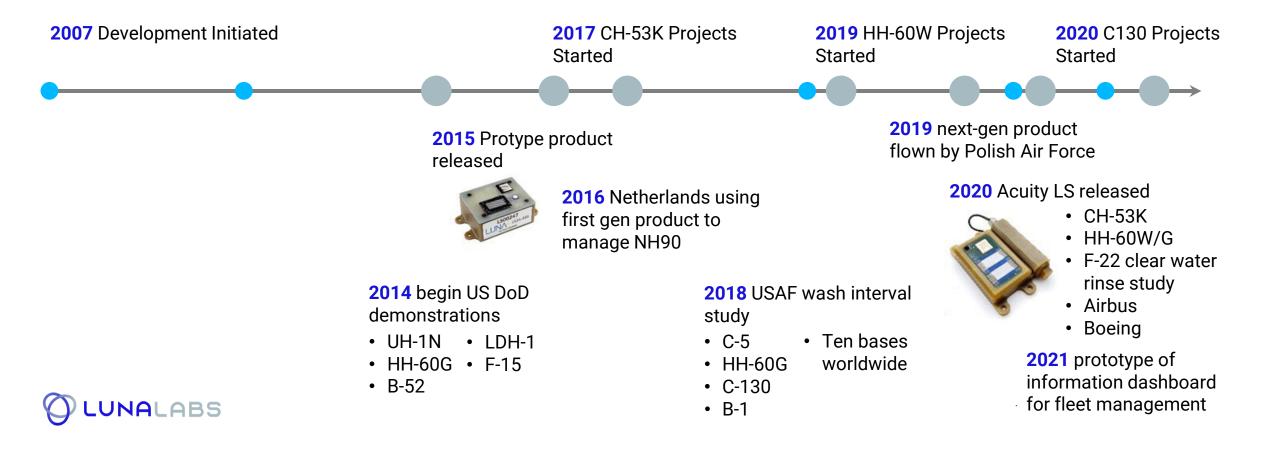
## Critical Parameters of Environmental Spectra



UNALABS

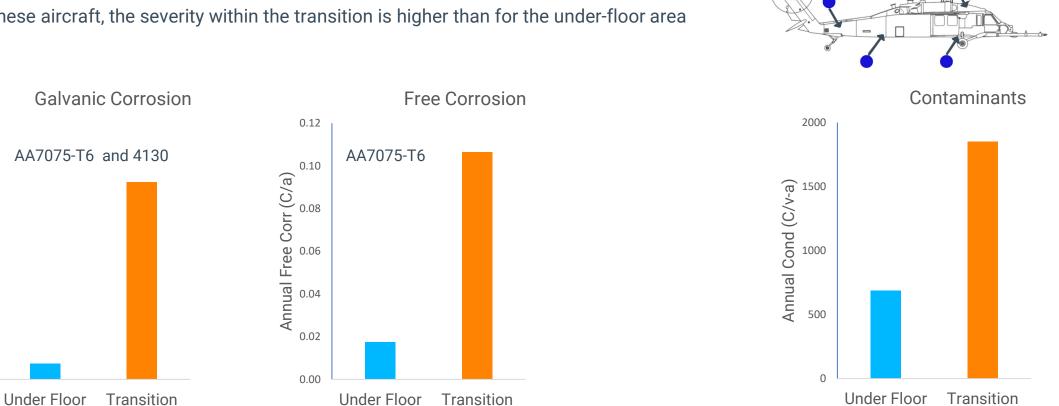


## Development History


Independent projects using Luna Labs technology are being led by AFRL, AFLCMC, NRL, NAWCAD, Netherlands Aerospace Laboratories, Polish Air Force Institute of Technology, Airbus, and Leonardo S4E

Atmospheric Corrosion Monitoring Informational Report AIR6970

**SAE HM-1 Integrated Vehicle Health Management Committee** Environment Spectra and Corrosivity Monitoring Using Electrochemical and Electrical Resistance Sensors




AD HOC I-SC 07 Environment Spectra and Severity Classification



## Helicopter Transition and Under-floor Severity

- Annual rates for contaminants, galvanic corrosion, and free corrosion produce consistent results ٠
- For these aircraft, the severity within the transition is higher than for the under-floor area



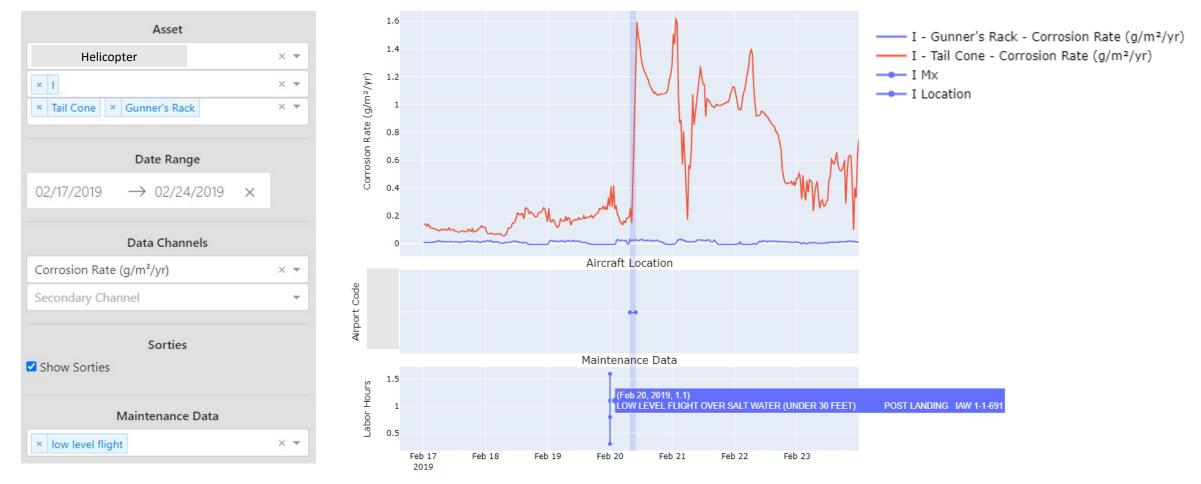
### Average annual rates determined from six aircraft



0.40

0.30

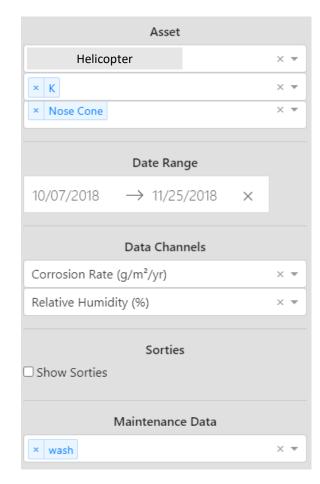
0.20

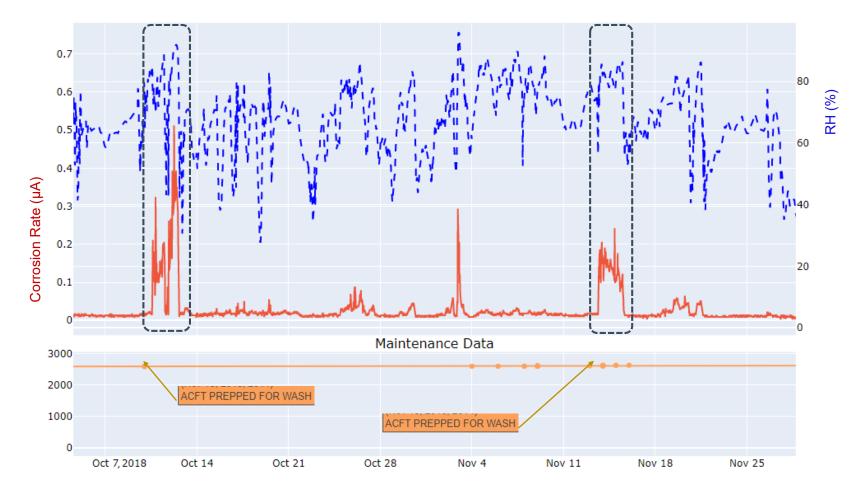

0.10

0.00

Annual Galv Corr (C/a)

## Influence of Operations


Corrosivity response in helicopter tail cone associated with low level flight over salt water






## Influence of Maintenance

#### Corrosion event in nose cone due to high humidity from helicopter wash







lunalabs.us | 23

## Aircraft Corrosion Health Monitoring - Moving Forward

- Leverage partnerships with US DoD and international organizations to prioritize and defer inspections through tracking of individual aircraft corrosivity and environment spectra
- Connect on-aircraft corrosivity and environment spectra with maintenance/operations data to optimize the use of aircraft corrosion protection and control technologies
- Identify how Luna Labs may support initiatives across DoD aviation to increase aircraft availability and reduce maintenance costs through condition-based corrosion maintenance



This material is based upon work supported by the United States Air Force under Contract Numbers FA8650-19-C-5078 and FA8650-19-C-5090.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

| T | har | nk ' | Yo | U |
|---|-----|------|----|---|
|   | nai |      |    | u |

Fritz Friedersdorf, Senior Technical Fellow fritz.friedersdorf@lunalabs.us | 540.808.8947

Kyle Moler, Business Development Manager kyle.moler@lunalabs.us | 540.435.0276



## Acuity LS Parts



#### Base

- Surface temp sensor
- RS-485 comm port
- User-replaceable battery





NALABS



Lid Sensor Panel

- Corrosion sensors
- Contaminants sensor
- RH & Temp sensor
- Device weight 0.7 lb (317 g)
- Dimensions 1.05" x 4.8" x 3.5" (2.67 cm x 12.19 cm x 8.89 cm)

Engineering alloys selected by customer alloy combinations:

| Free Corrosion Sensor | Galvanic Corrosion Sensor |
|-----------------------|---------------------------|
| ААбххх                | AA6xxx/1008               |
| ААбххх                | AA6xxx/SS316              |
| AA6061-T6             | AA7075-T6/Ti6-4           |
| 1008                  | AA6061-T6/1008            |
| 1008                  | EN988 Zinc/1008           |
| AA7075-T6             | AA7075-T6/SS316           |
| AA7075-T6             | AA7075-T6/4130            |
| AA7075-T6             | AA7075-T6/A286            |
| AA7075-T6             | AA7075-T6/Ti6-4           |
| AA2024-T3             | AA7075-T6/SS316           |
| AA2024-T3             | AA2024-T3/4130            |
| AA2024-T3             | AA2024-T3/A286            |
| AA2024-T3             | AA2024-T3/Ti6-4           |
|                       |                           |
| Dual Galvanic Sensors |                           |

#### <u>Dual Galvanic Sensors</u>

| AA6061-T6/CFRP      | AA6061-T6/CFRP |
|---------------------|----------------|
| 4A7075-T6/Ti-6Al-4V | AA7075-T6/CFRP |

## AMPP TM21449-2021 Aerospace Coating Protective Properties

# Standard describing three Test Methods for comparative coating performance testing

- Barrier Properties of a Coating
- Protective Corrosion Properties of a Coating at a Defect
  - Galvanic corrosion
  - Free (self) corrosion
- Protective Properties of a Coating for Environmental Cracking Resistance

#### Continuous Measurements for Determination of Aerospace Coating Protective Properties

|            | lationale                                                      |   |
|------------|----------------------------------------------------------------|---|
| Section 1  | General                                                        |   |
|            | 1.1 Overview                                                   |   |
|            | 1.2 Limitations for Technical Use                              |   |
|            | 1.3 Applicability                                              |   |
| Section 2  | Performance Parameters                                         |   |
|            | 2.1 Barrier Properties of Coatings                             |   |
|            | 2.2 Protective Corrosion Properties of Coating at a Defect     | 7 |
|            | 2.3 Protective Properties for Resisting Environmental Cracking | 7 |
| Section 3  | Coating Systems                                                | 8 |
|            | 3.1 Alloys                                                     | 8 |
|            | 3.2 Coatings                                                   | 8 |
|            | 3.3 Test Systems                                               | 8 |
| Section 4  | Coating Material                                               | 9 |
|            | 4.1 Corrosion Test Environment                                 |   |
|            | 4.2 Measurement of Environmental Test Conditions               | 9 |
| Section 5  | Surface Preparation of Pipe                                    | 9 |
|            | 5.1 Corrosion Test Environment                                 | 9 |
|            | 5.2 Measurement of Environmental Test Conditions               | 9 |
| Section 6  | Coating Application                                            |   |
|            | 6.1 Reporting                                                  |   |
| References |                                                                |   |
| Appendix A | Barrier Properties of Coating                                  |   |
|            | A.1 Principle                                                  |   |
|            | A.2 Barrier Property Measurement Parameters                    |   |
|            | A.3 Barrier Property Measurement Instrumentation               |   |
|            | A.4 Sensor Preparation and Coating                             |   |
|            | A.5 Exposure Method and Duration                               |   |
|            | A.6 Procedure                                                  |   |
|            | A.7 Test Data                                                  |   |
|            | A.8 Analysis and Expression of Results                         |   |
|            | A.9 Reporting                                                  |   |
| Appendix B | Protective Corrosion Properties of Coating at a Defect         |   |
|            | B.1 Principle                                                  |   |

AMPP TM21449-2021 ©2021 Association for Materiais Protection and Performance (AMPP). All rights reserved