

AFRL AM ManTech Overview

Mark D. Benedict, PhD

AFRL AM Lead

9 - 2 8 - 2 0 2 1

DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government Agencies and their contractors (Critical Technology) (9/28/2021). Other requests for this document shall be referred to (AFRL/RXMS)

CAFRL Operational Concept: Bending the Risk Curve for Additive Manufacturing

THE AIR FORCE RESEARCH LABORATOR

AFRL

Goal: Print as **big** as we need, as **small** as we can, with the **confidence** to fly, at a cost that is competitive.

TAXABLE PARTY AND TAXAB TEATLERED CONTRACTOR CONTRACTOR ATTACTOR STRATEGYCER ST ----------------

S&T Program (Synopsis / Short Description)

Question	Short Answer
What is "IT"?	 Identifying and Maturing AM to meet DAF specific needs
What tech challenge is "IT" overcoming?	 Lack of maturity in Q/C methods, Immature AM Feedstock, Lack of mature Process Capability, Lack of Affordability, Lack of Design Knowledge
Why is AFRL working on "IT"?	 AFRL ManTech Has Unique Focus to broadly promote process maturity in order to reduce cost, lead time, and volume challenges Constant contact with Industry, Other Gov, and DAF AM Stakeholders Puts ManTech in a unique Push/Pull opportunity space = MUCH Leveraging
Why is "IT" needed?	 Features and Properties - Deliver war winning new weapons platforms and availability AM at Scale - Build Size, Rate, and Cost limitations hinder AM Adoption Transition Support – USAF must be at least a near-peer to industry best-in class to achieve best outcomes at current technology maturity
Who cares/should care about "IT"?	Acquisition programs, ALCs, Maintenance Groups, Industrial base

Organizing Principles

		Benefits:
Features and Properties	 New Materials New Processes Enhanced Performance 	War Winning New Capabilities
AM at Scale	 Cost Reductions Print Size Increases Print Rate Increases 	Resilient Acquisition Schedules
Transition Support	 Design for AM Analysis / Lifing Validation Qual/Cert Methodology 	Agility for Sustainment

Additive Manufacturing

New Design Paradigms Rapid Spare Manufacturing Airworthiness Certification

Adam Hicks

Dr. Mark Benedict Dr. Tom Broderick

Dr. Dennis Butcher

2021 Highlights

- Change in Program Team Leadership
- COVID 19 Response
- Digital Engagement
 - AMO
 - MANY digital conferences

2022 Forecast

- Hypersonics
- CII 2020: Lead \$44.7M, Leverage/Watch \$13.6M
 - 2021: \$74.7M, Leverage/Watch \$35.3M

2021 Roadblocks

- Manpower
- COVID and Travel

1

FlexSpecs (funded)

Contractor: UDRI, Senvol

AFRL PM: Dr. Mark D. Benedict, AFRL/RXMS

Laser Zone1	Laser Zone2	Air Force Problem	Benefits to the Air Force		
		While Multi-laser powder bed additive manufacturing systems appear to offer critical production speed improvements, little is known about the material quality produced by these machines, and a validated process qualification methodology is sorely needed	Increased build rates and decreased build costs for critical AM parts such as Hypersonics scramjet engines and heat exchangers Ability to work with multiple parameter sets and bound material performance response		
		Technology Approach	Performance		
Laser Zone3	<section-header></section-header>	 Work with AFLCMC/EZP and UDRI technical staff to develop Technically Viable Methodology to Engage with the AWB-1015 process Try to deconflict multiple industry standards for AM Qualification Attempt to qualify a parameter space, not a parameter set Work with AI/ML techniques to more rapidly explore parameter space and quantify sensitivities Work with AFLCMC/EZP, UDRI, Army Futures Command, NAVAIR, MDA to establish a Ti64 LPFAM Data repository and establish the value proposition of data federation. 	FlexSpecs Expenditures		

Figure 1. Parameter Development Repeat Build Layout

Process Parameter	Acceptable Range
Volumetric Energy Density	52 – 77 J/mm³
Core Power	260 – 300 W
Core Speed	860 – 1160 mm/s
Core Hatch Spacing	0.09 – 0.12 mm
Overlap Amplitude	26 – 79 mm
Overlap Period	0.20 – 0.48 mm

Table 4. AMS 7000 Minimum Tensile Requirements

0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation (%)
50.0	120	30

Table 3. Summary of Tensile Results

	Orientation and		0.2% Y.S. (ksi) U.T.S. (ksi)		. (ksi)	Elongation (%)		Specimen	
	Laser C	Overlap	Min.	Mean	Min.	Mean	Min.	Mean	Count
	Single Laser	54.2	54.4	123	125.7	54.7	57.9	64	
	Horizontal	Laser Overlap	53.9	55.6	123	124.2	51.9	55.6	20
		Combined	53.9	55.5	123	125.3	51.9	57.4	84
	Vertical	Single Laser	53.2	55.4	121	123.7	38.3	58.6	66
		Laser Overlap	53.1	54.0	119	122.4	38.4	56.0	21
		Combined	53.1	55.1	119	123.4	38.3	58.0	87

The results from the metallography, tensile, fatigue crack growth rate, surface roughness and dimensional analysis have allowed UDRI deem the EOS M400-4 qualified for producing alloy 625 components of acceptable quality. Under the guidance of AFRL, UDRI will continue characterization of intrinsic, static, and dynamic properties required for design and production of complex, aerospace-relevant geometries with the M400-4. Current efforts seek to verify the processing parameter window and quantify fatigue and minimum allowable tensile properties.

The EOS M400-4 multi-laser system provides increased productivity without sacrificing material properties within the laser overlap regions. Porosity and melt pool geometry are unaffected by the laser stitching. Tensile properties are comparable for material built both in the single laser and laser stitch regions. With regular verification of the laser alignment with the EOS SmartCAL system, dimensional requirements and surface finish quality can be assured through the laser overlap region. Additionally, the EOS M400-4 maintains the proven architecture and build management of the M400-1 and laser scanners from the M290, making it a smart buy for organizations familiar with either syst

New Start: HAMOC

S&T Funding: \$1.5M, FY21
Current TRL/TAD: TRL 4/FY20
Transition to:
Lead TD/POC: AFLCMC/LPZ
Contributing TDs: AFRL/RXCM, AFLCMC/EZF

Hybrid AM Oil Cooler

	FY	21	22	23
Task/Project/Work Unit #1				
	S&T	0.8	0.7	
Unburdened Funding (\$M)	External (\$M) AFLCMC(EZP)	0.7	0.7	

Description	Delivering
 Increasing availability and affordability of Fuel Cooled Oil Cooler (FCOC) components AM casting replacement into a traditional oil cooler design 	 Best practices involving hybrid AM/Traditional manufacturing design and processes. Relevant test data using operational conditions
Technological Approach	Benefits to the Warfighter
 Supporting AFLCMC/EZP effort by tackling manufacturing related challenges Focused on gathering data surrounding AM/Traditional material welding, powder removal processes, and laser welding applications 	 Increased availability and reduced lead times for much needed FCOC components Decreased cost for small lot oil cooler purchases Support ongoing AFLCMC J85 oil cooler effort

New Start: Essentium Strategic Finance Increase (StratFI)

Technically a Phase 2 SBIR Contract: Waiver obtained to \$28M