

COMMERCIAL TECHNOLOGIES FOR MAINTENANCE ACTIVITIES

READINESS AT BEST COST

AM FOR FLEET CASTING SUSTAINMENT

20 years of transforming maintenance and sustainment

Bryce Weber NUWC Keyport Additive Manufacturing Lead Jerry Thiel University of Northern Iowa Metal Casting & AM Center Director

PROBLEM STATEMENT

- Supply Chain Development
 - There's a growing need to compress the metal castings acquisition cycle
- Foundry Industry
 - The United States faces a foundry engineering/experience shortage
- Military Readiness
 - DoD depots & shipyards require faster, more reliable alternatives to rebuild weapons platforms and respond to OPTEMPO
- DoD is slow to adopt sand printing and advanced casting tools on a broad scale
 - 3D-Printed sand molds allow

TECHNICAL APPROACH

- Printed Sand Molds
 - Evaluate the performance and benefits of using additively manufactured sand molds to produce high-quality, complex castings
- Solidification Analysis Tools
 - Evaluate the performance of solidification analysis in predicting casting quality
- Demonstrate Process on NAVSEA and NAVAIR Castings
 - Verify the quality & dimensional accuracy; compare to traditional methods
- Develop a 3-day training workshop for DoD Participants
 - Expand the DoD corporate knowledge base

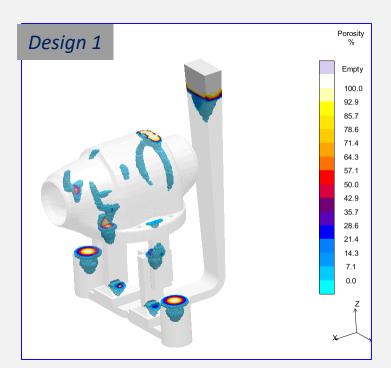
TECHNICAL APPROACH – APPLICATIONS

SSBN/SSGN Ohio-Class Submarine

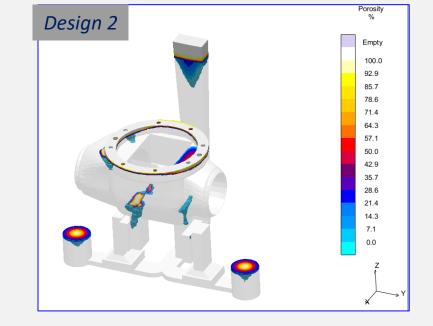
- Torpedo Tube Bracket
- 4" Seawater Ball Valve Body

H-53E Helicopter

• Nose Gearbox Cover



TECHNICAL APPROACH – 4" BALL VALVE


Solidification Analysis: Orientation & Gating Design Evaluation

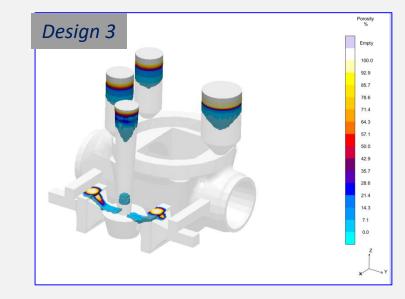
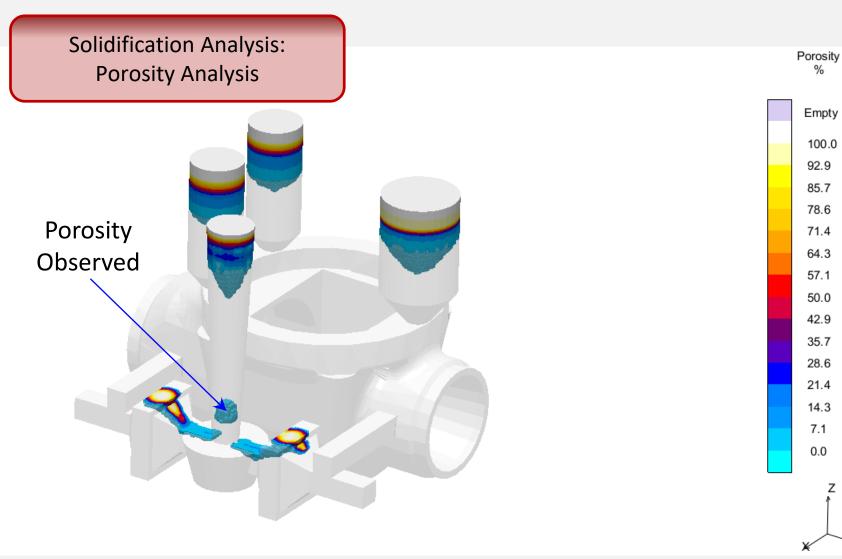

Material: Cu-Ni (MIL-C-20159)

Photo credit: University of Northern Iowa Metal Casting Center

MANUFACTURING SCIENCES

Rapidly simulate multiple rigging design strategies

TECHNICAL APPROACH – 4" BALL VALVE



Video credit: University of Northern Iowa Metal Casting Center

Distribution A

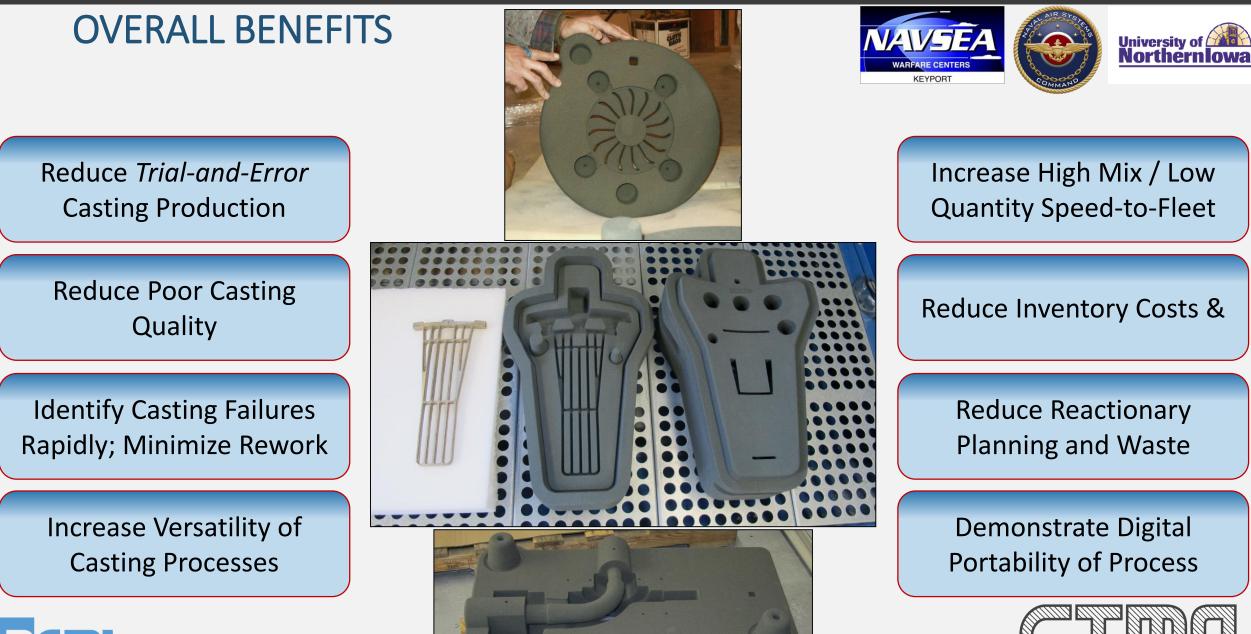
COMMERCIAL TECHNOLOGIES FOR MAINTENANCE AC

TECHNICAL APPROACH – 4" BALL VALVE

- Identify defects before pour
- Modify rigging & mold designs and simulate
- Compare physical results to enhance alloy data sets

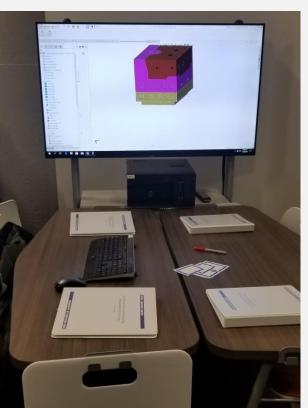
Photo credit: University of Northern Iowa Metal Casting Center

OVERALL BENEFITS


Ear books Use Only		4" Ball Valve - Value Proposition	
		Current Approach (Procure Entire Valve Assy)	AM Approach (New Valve Body)
	Replacement Option Lead Time	12-18 Months	3-4 Months
	Replacement Option Cost	\$130K (buy entire valve assembly)	\$37K (buy finished valve body)
	Repair Option Cost	\$15K - \$50K/EA (weld repair) + impact to schedule costs*	\$0*
	Repair Reliability	Low yield weld repair; Higher corrosion rates	High; new casting

Supply System Availability: Not available; Valve assembly long-lead item Demand: Numerous valves per OHIO CLASS submarines; 1-2 needed per availability

*Cost if Valve Body Not Available: If not achievable during shipyard maintenance availability, add cost of temporary departure and any actions to prevent further erosion/corrosion of valve body near area of wall reduction. Higher Risk of erosion/corrosion on weld-repaired valve bodies.



Distribution A

MERCIAL TECHNOLOGIES FOR MAINTENANC

UNI METAL CASTING COURSE OBJECTIVES

- Fundamentals of sand casting
- Sand printing design & applications
 - Mold design optimization
 - Printable sands for Naval alloys
 - Rigging design concepts
 - Solidification analysis
- Sand printing business case
 - Digital data package; portability
 - Speed & higher yield potential
- Investment casting with AM
- Hybrid tooling
 - FDM patterns, robotically milled molds
- Tours: UNI and Rock Island Arsenal

Navy hardware examples used throughout the course

TECHNOLOGY GAPS REMAIN

Additional Casting Alloys Found in Navy Systems

• Ni-Al-Bz, HY Steels, Titanium

Expanding Sand Types and Binder Resins

• Chromite, Zircon, Silica blends

Chemical Compatibility with Casting Alloys

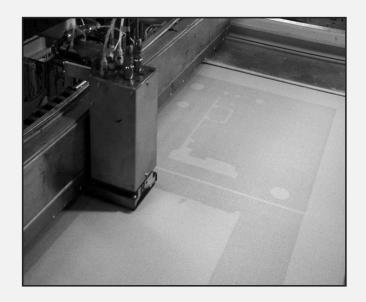
• Example: Sulphur from Furan binders can embrittlement & welding issues

Expeditionary Sand Casting

• Investigate feasibility of a portable "foundry-in-a-box"

Technical Data Package (TDP) Requirements

WHERE DO WE GO NEXT?


- 1) Grow the DoD's castings corporate knowledge and skillsets
- 2) Establish a functional DoD casting material readiness chain
 - Dynamically identify application candidates in supply chain
 - Establish foundry & services contracts
 - Consider new acquisition model leveraging 'digital portability'
 - Coordinate new capability investments; establish R&D / production partnerships
- 3) Educate and communicate with industry
 - Lead industry towards a different business model
- 4) Integrate
 - Digital/Portable Data Transfer
 - Standard Technical Data Package

SPECIAL THANKS

- Defense Innovation & Sustainment Group (DISG)
- NAVSEA 05T Additive Manufacturing Program Office
- NAVAIR Additive Manufacturing IPT
- University of Northern Iowa Metal Casting Center team
- Puget Sound Naval Shipyard
- NUWC Keyport Additive Manufacturing Team
- National Center for Manufacturing Sciences (NCMS)

THANK YOU

NUWC KEYPORT

Bryce Weber (360) 396-2625 bryce.a.weber1@navy.mil

UNIVERSITY OF NORTHERN IOWA

Jerry Thiel (319) 273-7085 gerald.thiel@uni.edu