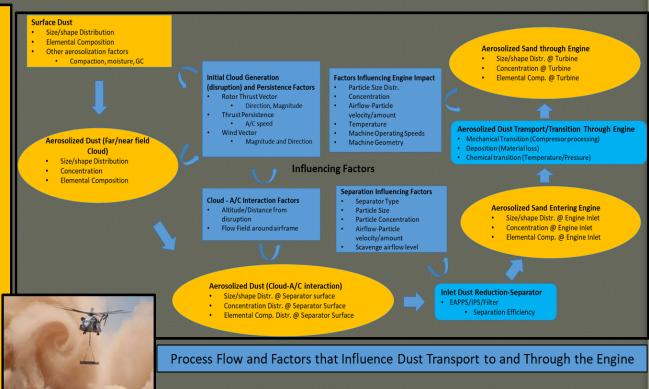


Navy Compressor and Turbine Coatings Update


Chris Rowe, AB42 ASG 25 May 2021

DISTRIBUTION A. Approved for public release: distribution unlimited

Understanding the complex problem of dust Ingestion

- Desert Operational Impacts to Modern Turbine Engines are Highly Complicated
 - Variability of the Environment
 - Variability of the Mission Type
 - Increasing Demands on the Engines
 - Driving Higher Turbine Temperatures
 - Lower Margins
- Technology Development in this Area
 - Historically Lagged the Requirement
 - Requirement was not Well Defined
- Commercial and Military Demand has Driven Recent Attention
 - DoD, NATO, Industry, and Industry Collaboration
 - Developing
 - Representative Analytical Tools
 - Design Concepts
 - Verification Methods

NAVAIR has been collaborating in significant efforts to understand the physics, modelling, design, and verification approached to dust and its impacts.

Sand and Dust-Solution Areas



Solution areas focus on strategies that impact Time in Sand and Time on Wing (ToW) include the following:

Navigate:

Strategy- Reduce formation of and/or interaction with the cloud

Impact- Reduced Particulate Ingestion to slow performance deterioration rate.

Awareness of State:

Strategy- Improve weapon system state awareness of:

- 1. External threat (Cloud concentration and composition)
- 2. Internal system reaction (Real Time Power and Stall Margin)

Impact- Real time environment/system status delivered to aircrew for optimized decision making/ORM.

Separate:

Strategy- Improve A/C and/or engine inlet separation and/or filtration.

Impact- Reduced Particulate Ingestion to slow performance deterioration rate.

\Rightarrow

Tolerate:

Strategy- Improve engine tolerance to ingested particulates through:

- 1. Increase initial engine performance margin.
- 2. Reduce internal impacts of dust on turbo-machinery.

Impact- Increased overall performance margin for deterioration consumption and/or reduced deterioration rate.

Maintenance:

Modify maintenance strategy to maximize readiness and TOW during austere operations:

Solution area to explore: Periodic or condition based maintenance requirements, equipment, methods, and solutions

NAVAIR has been working many areas as a systems approach to mitigate the dust threat

Fielded Navy/MC Platform Coating Summary

Engine (Aircraft)	Coating Configuration	Mitigation Target	Stages Coated	Coating Status
T58-16A (H-46)	ER-7/BlackGold	Erosion	Rotor Stages	Qualified Engine Sundowned
T64-416/419 (H-53D/E)	ER-7	Erosion	Rotor Stages and Vane Stages	Qualified/Fielded
T408 (H-53K)	BlackGold	Erosion	Axial Rotor and Vane Stages	Production Configuration LRIP

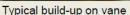
- 1. Multiple fielded coating systems have consistently shown significant reduction in chord loss/airfoil thinning
- 2. Early stage (1st and sometimes 2nd) show vulnerability to high impingement angle, leading edge plastic deformation (LE rollover)
 - This LE protection shortfall continues to be an active area for technology improvement

On-Going Navy/MC Platform Coating Summary

Engine (Aircraft)	Coating Configuration	Mitigation Target	Stages Coated	Coating Status
T700-401C (H-1/60)	BlackGold	Erosion & Corrosion	Axial Rotor Stages	Field Service Evaluation (FSE)
AE1107C (V-22)	BlackGold	Erosion & Corrosion	Rotor Stages	Field Service Evaluation Ended (Contracts Issues) Program Cancelled
T56-427/A (C-130/E-2/C/D	BlackGold	Erosion & Corrosion	Rotor Stages	Qualification Completed Program On Hold (BCA)

1. T700

- 1. Testing showed clear improvement in chord retention and airfoil thinning.
- 2. T700 coating system qualified, hardware awaiting install, ECP processing for FSE (~20 rotors) BCA being updated for repair line upgrades.
- 2. AE1107C FSE was not completed within the timeline of the contract requirements and terminated. Data that was returned was inconclusive.
- 3. T56 testing showed clear improvement. Program has been put on hold awaiting updated BCA for production/repair consideration.



Turbine Sand Accumulation Mitigations

Two turbine failure modes and effects areas have been identified while operating certain Navy/Marine Corps Aircraft in austere regions

- 1. Potential Airworthiness Impacts-Turbine blade/vane/shroud sand glassing and accumulation
- 2. Durability Impacts- CMAS glass infiltration and TBC/EBC distress

Typical build-up on blade

CMAS Damage on Shroud

NAVAIR/ARL/NASA completed an advanced coating demonstration program in 2016

- Evaluated coating options to reduce surface accumulation and/or retention as well as overall durability
- Learning from this program has informed follow on coating development programs.
- Currently collaborating on a follow on set of demonstrations of updated coating options in multiple engine lines

Questions?

