



#### Joint Technology Exchange Group

## **Underwater Inspection Research**

#### University of Houston Craig Glennie clglennie@uh.edu 832-842-8861





# **U of Houston Background**





- F2019, ~46,000 students (35,000 ugrad, 11,000 grad)
   >10,000 degrees awarded
- Hispanic Serving Institution (>30% Hispanic and > 10% African American)
- Tier One Research Institution >\$100M in research expenditures per year.
- Significant Ties to Industry in TX, including Oil & Gas

   MSc in Subsea Eng (2012) First in U.S.



## U of Houston Collaborations and R&D Strengths

# 2

## **Subsea** SYSTEMS INSTITUTE

- U of Houston, Subsea Systems Institute (SSI), is a federally funded national research center focused on offshore energy exploration and production:
  - Established in 2015 under the RESTORE Act
  - Works closely with NASA, Rice University and multiple Quality Assurance Governmen Regulator industry partners such as ExxonMobil, Total, Mitsubishi and Oceaneering
  - Undisputed leader in transformative deep-water technology and offshore energy operations
  - Develops innovative research in underwater areas. Specialties include: robotics and automation, subsea power, human factors, flow assurance, materials and decommissioning
  - SSI has extensive experience organizing / managing teams of academia, industry and government







# U of Houston has a rich suite of surface and underwater research capabilities:

- Underwater maintenance and sustainment for oil industry
- Subsea systems and communications (signal processing, sonar)
- Robotics
- Drones, Swarms, Autonomous Systems (hull hydrodynamics and bioinspired vehicles)
- Materials and polymers
  - Coatings, heat transfer and 2-phase flow
  - High thermal conducting materials
  - Extreme conditions (high temp, high pressure)
  - Fatigue resistance
  - Anti-corrosion
- Water treatment
- AI/ML
- Waste heat management
- Manufacturing
- Energy Storage / Battery Manufacturing and High Energy Natural Material







## Key Research Themes for Underwater Inspection



- Underwater Inspection Research at UH Driven by Oil & Gas Industry
- Today's Focus in Three Primary Areas
  - Sensors and sensing systems
  - Localization in complex and cluttered environments
  - Advanced Data Analysis (AI/ML)





# **Underwater Robotics and Sensors**



## **Bio-inspired Robotic Fish - Fabrication and Testing**



Zheng Chen Mechanical Eng.

- A three joints robotic fish with one DC motor and one servo motor.
- Wireless control with embedding micro-computer
- Length: 38 cm & Weight: 0.7 kg.
- Swimming up to 0.22 m/s.
- Its novel propulsion mechanism can mimic real fish's swimming pattern.



#### **Prototype of Multi-joint Robotic Fish**



**Multi-joint Fish Tail** 





#### **Forward Swimming**

**Turning Swimming** 





Gangbing Song Mechanical Eng.

Piezoceramic-enabled and touch-based inspection method for the tightness (looseness) of bolted flange in undersea environment



Illustration of the proposed ROV-enabled robotic inspection system: (a) the ROV assembly; (b) the integration of the ROV with the PZT-based sensing manipulator; (c) the main dimension of the entire ROV enabled robotic inspection system.



#### **Underwater Bolted Connection Inspection**







## **Cooperative Swarms and Localization**



# Localization between ROVs using triaxial coil antennas



UNIVERSITY of HOUSTON



# Localization between ROVs using triaxial coil antennas

Advantages of coil antennas as a sensor:

- Low Propagation Delay
- Stealth Operation
- Affordable Implementation

Disadvantages of coil antennas as a sensor:

- Short Range
- Location Ambiguity



Aaron Becker Electrical Eng.





 $\theta_1 = \theta_2$ Because the voltage received in both cases is the same



### Following of Linear Metal Elements







The NASA Neutral Buoyancy Lab enabled testing sensing with tracking information

10

30

0:33:01

D





# **Data Analysis and Machine Learning**



## Framework for automating inspections Using Machine Learning



Vedhus Hoskere Civil Eng.





#### Façade inspections









### Ongoing USACE Project

### Miter Gates of Navigation Locks

**\$229 billion** worth of cargo transported in 2015 by the US inland waterways

Inspections are vital to mitigate consequences of unscheduled closures



#### Modeling Other Variables







#### Condition-aware model





#### **Underwater Inspections**

- Inspections are traditionally done by divers using touch + sight
- Army Corps has begun exploring the use of multibeam scanning sonar for data acquisition
- Sensors of interest



- Teledyne BV5000
- Tritech Gemini1200ik



Water is usually very murky





- Ultrasonic sensors can help see things when visible light is unavailable or can't penetrate due to murkiness
- However, the resulting images can be very difficult to interpret

Underwater Inspection of Navigation Structures with an Acoustic Camera, Evans et al. (USACE)



- Can we train a deep neural network that can make the sonar images more *interpretable*?
- What constitutes *interpretable*?
  - Color corrected
  - Improved
     resolution (i.e., smart
     interpolation)
  - Automated defect detection







# Thank you!

Craig Glennie clglennie@uh.edu 832-842-8861