

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

JTEG Brief - Integrated Corrosion Systems, 1408300

Stephen R. Bails

DB-03 / Chemical Engineer

AFCC-SIE-ES-MAT-ECC

01 JAN 2019

Purpose:

 Develop new combinations of pretreatment, primer and CARC topcoat with significant improvements in corrosion, chip, and abrasion resistance, using existing or recently developed coating technology.

Specific Objectives:

- Establish Joint Test Protocol (JTP) to address substrates, pretreatments, coating layers, application variables and testing.
- One or more top-rated integrated systems will be considered for demonstration at an Army depot.

Projected Benefits:

- Improvements in corrosion resistance.
- Cost savings through reductions in corrosion and subsequent replacements.

Products:

- Results of physical testing for a large set of material combinations including adhesion, chip, impact, corrosion resistance, etc.
- Results of analytical/electrochemical testing to verify and rank barrier/protective and corrosion resistance performance.
- Recommended optimized coatings system stack-ups

Payoff:

- Provide depots with a system of coating materials with maximum performance, productivity and life cycle cost benefits
- · Advance technical readiness level of developmental coating materials
- Demonstration of performance and application characteristics on representative platform

JTEG BRIEF INTEGRATED CORROSION SYSTEMS, 1408300

PROJECT SCHEDULE

ELEMENTS	FY2016	FY2017	FY2018	FY2019
JTP Development				
Test Panel Preparation				
Performance Testing				
Demonstration				

TASK 1 - DEVELOP JOINT TEST PROTOCOL

PROJECT DETAIL:

Establish a Joint Test Protocol (JTP) to address substrates, pretreatments, coating layers, application variables
and testing that will be conducted. The focus will be on testing complete stack-ups using as many combinations of
existing technologies as is feasible to evaluate.

PROGRESS:

- JTP Developed/delivered
- SEE TEST MATRIX TABLE ON SUBSEQUENT SLIDE FOR COMPLETE LIST OF COATINGS AND COMBINATIONS EVALUATED

JTEG BRIEF INTEGRATED CORROSION SYSTEMS, 1408300

• JOINT TEST PROTOCOL TEST MATRIX: COATING SYSTEMS EVALUATED

Description	Group	Prep 1	Clean 2	Pretreat	Primer 1	Primer 2	# of Panels
Galvanized Control	1		solvent		liquid		18
Liquid control 1	1	Grit Blasted			liquid		18
Liquid control-PT#1 (ZnPO4)	1	Grit Blasted	Chemical	ZnPO4	liquid		18
Liquid Control-PT#2 (ZrOx)	1	Grit Blasted	Chemical	ZrOx	liquid		18
Zinc Rich	2	Grit Blasted			Zinc Rich		18
Zinc Rich, PT#2	2	Grit Blasted	Chemical	ZrOx	Zinc Rich		18
Zinc Rich, liquid primer	2	Grit Blasted			Zinc Rich	liquid	18
Zinc Rich, liquid primer, PT#2	2	Grit Blasted	Chemical	ZrOx	Zinc Rich	liquid	18
Electrocoat	3	Grit Blasted			Electrocoat		18
Pretreated Electrocoat	3	Grit Blasted		ZrOx	Electrocoat		18
Zinc rich + electrocoat	3	Grit Blasted			Zinc Rich	Electrocoat	18
Powder control 1	3	Grit Blasted			Powder		18
Powder control, PT#2	3	Grit Blasted	Chemical	ZrOx	Powder		18

ZnPO4-Zinc Phosphate; ZrOx – Zirconium Oxide

INTEGRATED CORROSION SYSTEMS, 1408300

JTEG BRIEF

TASK 2 - PREPARE JTP TEST PANELS

PROJECT DETAIL:

- Assemble the materials described in the JTP and prepare the test panels.
- Initial panel testing will be done to a limited degree to assure quality.
- Coated test panels will be distributed between the collaborating subcontractors for testing.

PROGRESS:

Complete

TASK 3 - CONDUCT AND DOCUMENT JTP TESTING

PROJECT DETAIL:

- Performance testing according to the JTP.
- Analysis will be carried out to evaluate and rank the various coatings systems.
- Relative material cost will be included where ever possible.

PROGRESS:

- Completed tests:
 - Standard steel panels, conductivity panels and Spangle panels were evaluated (Edge performance info)
 - Round 1 Matrix: 2000 hours salt spray per ASTM B117, 90 cycles GMW14872
 - Chip and abrasion resistance testing
 - Round 1 Matrix Analysis Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Scan (PDS) completed on 500 hour salt spray panels
 - Round 1 Matrix Analysis Generate Representative EIS curves
 - Round 1.5 Matrix Exploration of Cold Sprayed metal coatings 25 cycles
 - Cape Canaveral Testing @ 500 Hours, 1000 Hours & 1500 Hours and to failure
- Result Highlights:
 - Zn-rich panels performed the best with no red rust after 1000 hours salt spray
 - PDS results of topcoated 500 h salt spray panels match this conclusion with indications that the Zn-rich primer is very active in
 protecting the steel substrate
 - Co-inhibitors studies with magnesium oxide (MgO) demonstrated that Zn-rich coatings featuring a combination of MgO and orthovanillin (OV) are slightly superior to MgO alone.
 - EIS & PDS complete for most samples. Both illustrate clear differences in protection mechanisms and barrier properties of the coating stacks.

TASK 4 - SUPPORT DEMOSNTRATION AT ANNISTON ARMY DEPOT

• One or more top rated integrated systems will be considered for demonstration at an Army depot.

PROGRESS:

• Recommendations for top rated integrated systems currently being finalized.

TASK 5 - FINAL REPORT

• The final report will cover which if any integrated systems represent a significant improvement in corrosion resistance over current coating systems, an estimate of the robustness of the preferred systems and an estimate of the impact on costs.

PROGRESS:

• Final report to be submitted May 2019.

Questions?