

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Model Based Logistics Engineering (MBLE)

Adam Brennan

Supervisor - Team Lead

Ground Vehicle Systems Center

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: OPSEC2142

Specialty Engineering Mission

- Provide specialty engineering (DfR, DfM, DfL, CBM+, LE) expertise and knowledge to reduce the Army Operational & Support costs through proactive practices and analyses.
- Specialty Engineering improves system design, system sustainment, and system life cycle management through a wide range of specialty engineering capabilities and supportability analyses that leverage more complete, accurate, and available life cycle data.

Specialty Engineering Vision

 To be the Specialty Engineering Center of Excellence for S&T and Acquisition Program of Records within the Army ground and sea domain thru providing innovative supportability model based logistics engineering support, analyses, and services that ensure the most *reliable*, *maintainable and sustainable* technologies and systems are developed for use by the Warfighter.

MODEL-BASED LOGISTICS ENGINEERING SUPPORT (MBLE)

Advantages of MBLE

- Efficiency
 - ✓ Model can be used and updated throughout the project and lifecycle
 - $\checkmark\,$ Reports and analysis are available with the push of a button
- Consistency
 - Downstream effects of failure modes can easily be identified automatically using the functional model
- Repeatability
 - ✓ Subjectivity is removed, as model forces a certain level of detail and accuracy

Focus Areas

- Data Requirements
 - Accurate data packages and drawings are needed up front in order to build a complete functional model
- Contractual Language
 - ✓ Adding specific contracting language earlier in the design process allows for delivery of the correct reliability data, TDPs, electrical schematics, system layout drawings and subsystem details which allow a complete and accurate model to be built.

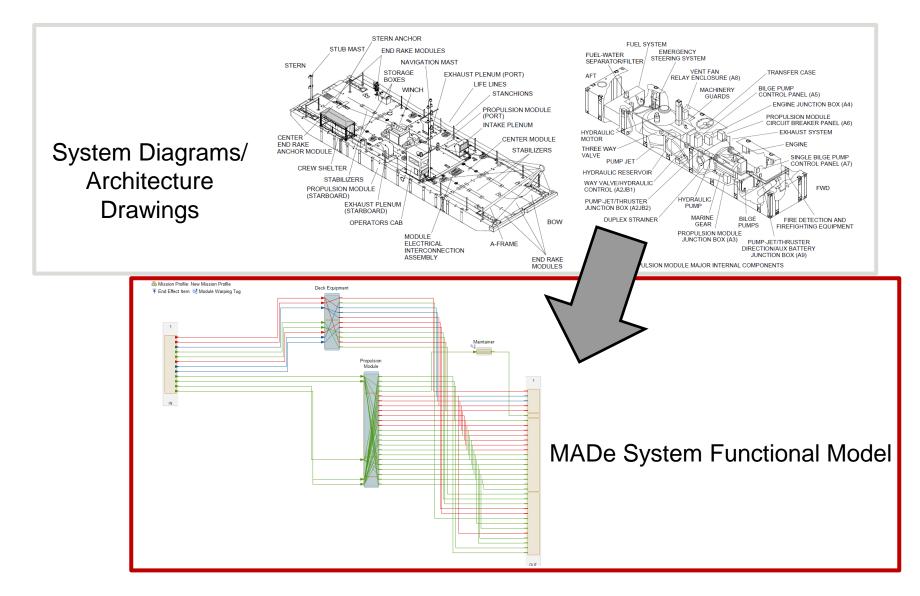
Maintenance Aware Design (MADe)

What MADe does:

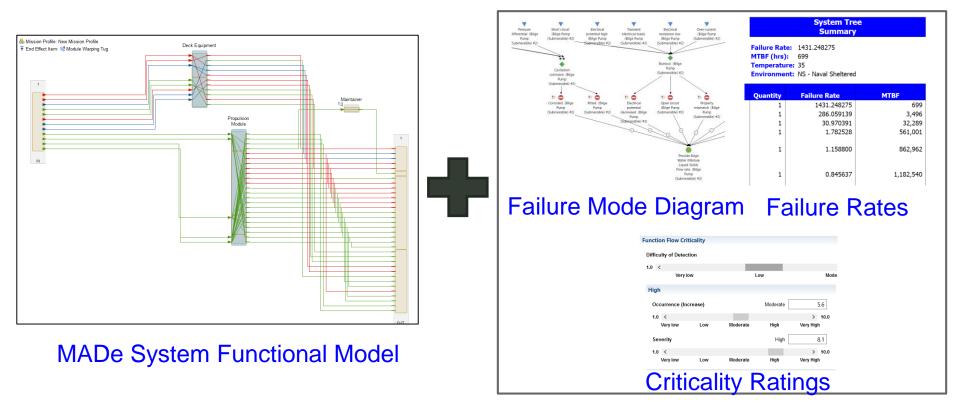
- Enables better decisions about the design and support of safety/mission critical equipment at each stage of the product lifecycle.
- ✓ Maintenance Optimization of legacy systems
- ✓ Helps to Establish Life Cycle Costs
- ✓ Design for CBM
- ✓ Optimizes cost of ownership, system reliability and system availability

Advantages of Using MADe

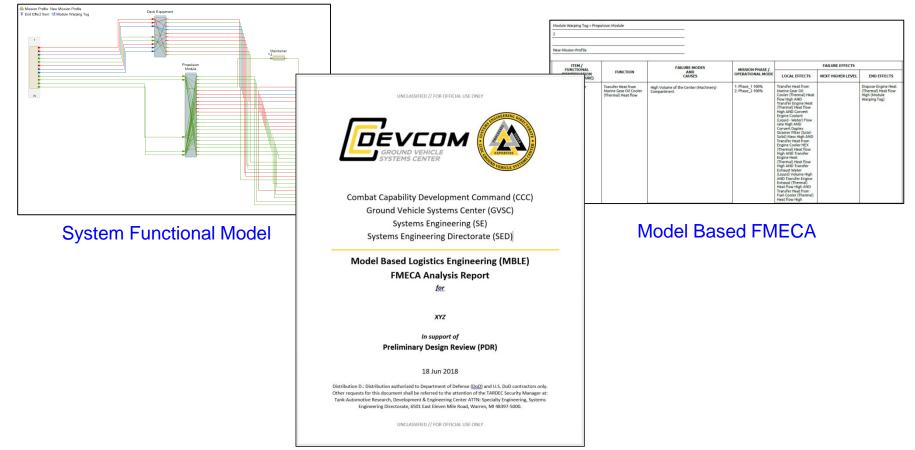
- Accounts for complexity and large number of moving parts by starting with a functional model
- ✓ Dependency modelling (or mapping) is achieved 'automatically' throughout the system, rather than relying on the engineer
- \checkmark Introduces standardization into the design process to
 - ✓ improve quality and analysis capabilities
- \checkmark Model can be shared across competencies and
 - ✓ organizations for different purposes/analyses
- ✓ Provides traceability of analysis across the product lifecycle



MADE – MAINTENANCE AWARE DESIGN ENVIRONMENT

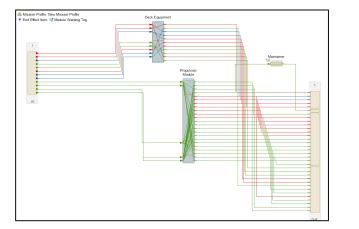


HIGH LEVEL MODELING PROCESS



OPTION #1 – INDEPENDENT ASSESSOR DELIVERABLES

Risk Reduction:


- **FMECA** Analysis Report
- Verifying deliverables from contractors are thorough and in accordance with technical standards
- Providing a baseline that can be used for traceability of improvements
- Identification of key failure areas that may need an updated maintenance strategy/schedule

DISTRIBUTION A. See first page.

OPTION #2 ORGANIC MODEL BASED FMECA

System Functional Model

2						
New Mission Profile						
ITEM / FUNCTIONAL IDENTIFICATION (NOMENCLATURE)	FUNCTION	FAILURE MODES AND CAUSES	MISSION PHASE / OPERATIONAL MODE	FAILURE EFFECTS		
				LOCAL EFFECTS	NEXT HIGHER LEVEL	END EFFECTS
Propulsion Module .	Teardine Heat Toon Hearne Gear Ol Cooler (Thermal) Heat flow	High Volume of the Center (Nuchinery) Compartment	1 Phase_1 100% 2 Phase_2 100%	Transfer Heat from Marine Care Oil Cooler (Thermai) Heat New High AND Charles (Thermai) Heat High AND Convert Engine Cooler Convert Duples Statianer Filter (Solid- Solid) Mass High AND Convert Duples Statianer Filter (Solid- Solid) Mass High AND Convert Duples Statianer High Heat Flow High AND Transfer Exhaust Water Undword) Heat Flow High AND Transfer Exhaust Water Undword High AND Transfer Heat flow Heat flow High AND		Diagose Engline Her (Thermal) Heat floor High (Module Werping Tug)

Model Based FMECA

DoD Digital Engineering Strategy

Ms. Philomena Zimmerman Deputy Director, Engineering Tools and Environments Office of the Deputy Assistant Secretary of Defense for Systems Engineering

> INCOSE IW Jacksonville, FL | January 19, 2018

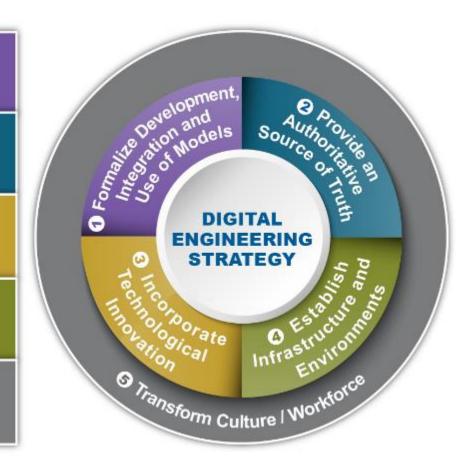
ଧ**Nତେଇଟେ**ଇW Jan 19, 2018 | Page-9

Distribution Statement A – Approved for public release by DOPSR on 10/03/2017, SR Case # 18-S-0002 applies. Distribution is unlimited..

Digital Engineering Strategy: Five Goals

Formalize the **development**, integration and use of models to inform enterprise and program decision making

Provide an enduring authoritative source of truth


Incorporate **technological innovation** to improve the engineering practice

Establish supporting **infrastructure and environments** to perform activities, collaborate, and communicate across stakeholders

Transform a **culture and workforce** that adopts and supports Digital Engineering across the lifecycle

Drives the engineering practice towards improved agility, quality, and efficiency, which results in improvements in acquisition

INCOSE IW Jan 19, 2018 | Page-10

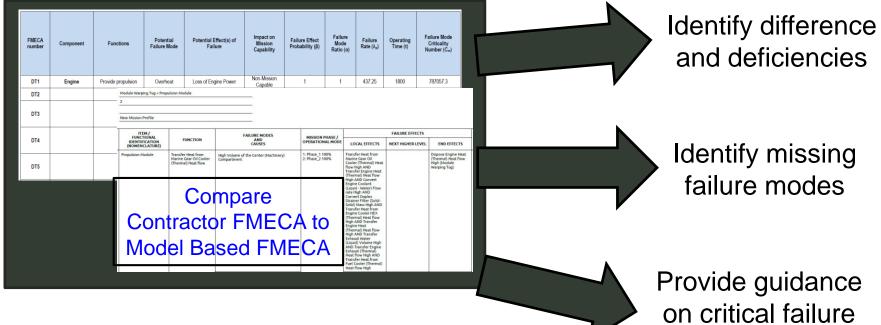
Distribution Statement A – Approved for public release by DOPSR on 10/04/2017, SR Case # 18-S-0002 applies. Distribution is unlimited.

Goal #1: Formalize Development, Integration & Use of Models

Models as the cohesive element across a system's lifecycle

INCOSE IW Jan 19, 2018 | Page-11

Distribution Statement A – Approved for public release by DOPSR on 10/04/2017, SR Case # 18-S-0002 applies. Distribution is unlimited.


QUESTIONS?

DISTRIBUTION A. See first page.

OPTION #1 – INDEPENDENT ASSESSOR DELIVERABLES cont.

Risk Reduction through:

- Verifying deliverables from contractors are thorough and in accordance with technical standards
- Providing a baseline that can be used for traceability of improvements
- Identification of key failure areas that may need an updated maintenance strategy/schedule

Provide guidance on critical failure maintenance strategy