

Advanced Technology & Training Center (ATTC) & Additive Manufacturing

Presenters: Mr. Jason G. McDuffie, P.E.
Chief, Metals Technology Office (MTO)
jason.mcduffie@us.af.mil
MSgt Josh Bemis
AF MTO Superintendent

joshua.bemis@us.af.mil

Approved for Public Release Security Review #78ABW-2019-0080 (19-05316)

Overview

- Mission -- Advance Technology & Training Centers (ATTCs)
- ATTCs Overview
- Academic Collaboration
- Training
- Additive Manufacturing within the Air Force
- Team Approach

The primary mission of the Advanced Technology and Training Center in Middle Georgia (ATTC-MG) is to qualify state-of-the-art advanced technologies for the sustainment enterprise while providing training for engineers and operators through a collaborative environment.

May 2019

- Advanced Technology Training Centers are located in
 - Dayton, OH (ATTC-Dayton) and
 - Warner Robins, GA (ATTC-MG)
 - Pittsburg, PA (TITAN/ATTC)
- ATTC reports directly to Air Force Life Cycle Management Center, Product Support Engineering Division (AFLCMC/EZP), Wright-Patterson AFB
- Tasked to identify, assess, develop, validate, verify and deploy new technologies for implementation across the sustainment enterprise to:
 - Improve readiness
 - Supporting out of production spares, low-volume builds, tooling/fixtures/jigs, etc., for sustainment ops and training
 - Reduce sustainment costs

- The ATTC-MG is equipped to deliver and/or support the following to AF platforms:
 - Design optimization for new technology implementation (Additive Manufacturing (AM), Cold Spray, etc.)
 - 3D Scanning and Modeling
 - Metal and Polymer AM: EOS, Stratasys Fortus
 - Cold Spray restoration
 - Post-processing operations: machining, heat treatment
 - Advanced Coatings: Non-chrome E-Coat, Powder Coat
 - Condition-Based Maintenance plus (CBM+)

- ATTC-MG operates out of a 44,000 square-foot (approx.) contracted facility space
 - Equipment within the facility is Government-owned
 - Product/Services does not cost the System Program Office (SPO)
- Located less than 5 miles from Robins AFB, GA
 - Enabling the right equipment and opportunities for collaboration between academia, industry, research, and Air Force engineers and maintainers
- ATTCs focuses on four main areas to deliver better capabilities faster and cheaper:
 - New technology application
 - Experimentation
 - Process development
 - Training

- Share best practices and lessons learned
 - AM Design Rule Book
- Provide education and awareness of polymer and metals AM, scanning and modeling, AM materials, design for AM, and lessons learned for AM
 - Developmental Guidance Notifications
 - 19-001: AM DRB
 - 19-002: AM Strategic Implementation Plan (AMSIP)
 - 19-003: AM Request Form and Parts Tracker
 - 19-004: AM Equipment Purchase
 - 19-005: Process for Printing Qualified AM Parts
 - 19-006: ATTC Processes, Categories, Inspection and testing

- ATTC-MG is a key player in laying the foundation for additive manufacturing across the Air Force detailed in the United States Air Force AMSIP that includes the following principles:
 - Standardized processes and equipment
 - Certified operators and machines
 - Skilled technicians and engineers
 - Cyber secure, centralized technical data
 - Enterprise network

Academic Collaboration

- University of Georgia
 - Utilizing additive manufacturing for heat exchanger optimization
 - Materials research across additive manufacturing & cold spray
- Georgia Institute of Technology (GT) (on the horizon)
 - facilitate training and use of campus lab equipment via ATTC-MG employees
 - creating of working space at GT for an ATTC-MG employee
 - Supporting Jr-level research, Sr design projects, & graduate school research/special topics
- Mercer University
 - Senior Projects: Hand Prosthesis with Jointed Fingers & Offroad Car Uprights
- University of Alabama
 - Strain controlled fatigue and crack growth rate testing (17-4 SS and Ti-6-4)
- Central Georgia Technical College
 - Laying foundation for AM and Cold Spray training and development
- Georgia Southern University
 - Support/Judging Sr. design projects
 - Laying groundwork in coordinating on testing of AM materials

On-Site Training/Courses

Technicians

- EOS M290 On-line Operator
- EOS M290 In-residence Operator
- Fortus 450/900 On-line Operator
- Fortus 450/900 In-residence Operator

Engineers

- Fundamentals of AM Design (Polymers)
- Fundamentals of AM Design (Metals)
- Advanced AM Design (Polymers)
- Advanced AM Design (Metals)

On-Site Training/Courses

Course name Funds of AM (to include some basic design content)	Duration 2 day	Software Z-suite
FEA with Inspire	2 day	Inspire
Advanced Design for AM (Polymers)	2.5 day	Insight/control center
Advanced Design for AM (Metals)	2.5 day	SolidWorks, Magics, RP tools, EOS print
Scanning & Modeling	2-3 day (almost done with development)	DesignX, VXElements, FARO, Handyscan

May 2019 11


Design for AM

From block to advanced 3D-printing solution

12

NOW TERM: Stable Foundation of AM Metals and Polymers Capabilities

- ► Establish selective AM capability: depots & MAJCOM backshops
- Qualify target parts: diminishing manufacturing, non-critical structural aircraft parts
- ► Standard AM equipment, training, processes, and tools
- Scanning & modeling process & tools
- Develop facility guidelines and post processing

- ► Expand AM capability: additional weapon system components, expanding across depots, MAJCOMs, and program office engineering
- ▶ Qualify target parts: critical structural aircraft components
- Demonstrate network capability and cyber secure library
- Validate AM process controls, material characterization, process parameters, and reproducibility

LONG TERM: Establish Manufacturing Repair Network

- Target opportunities: print anywhere on-demand
- Target parts: rotating aero hardware
- Global network of equipment and processes

Today

Mainly Polymer Based

- Printing polymer training aids, fixtures, & low criticality parts
- Materials data for stainless steel, titanium, & Ultem™
- Metal & polymer components currently flying on 5 airframes
- Advanced Technology & Training Centers (ATTC)
- Educating leaders, engineers & technicians

Tomorrow

Centralized Applications

- Qualify higher criticality parts
- Expand materials database to high strength/temp alloys
- Standard AF documentation
- Qualified operators/machines
- Implement digital thread/twin
- Expand ATTCs
- Implement initial qualified field level capability

Future

Agile Manufacturing

- Global manufacturing network using digital thread
- Cyber secure parts library
- Print on demand, any time, any machine

7

Co-located with centers of engineering experience

May 2019

As of April 2019

- > 74+ polymer printers
- > 18+ metals printers
- > 36+ locations with printers
 - Air Force Bases: Tinker, Hill, Robins, Randolph AFBs
 - AFSC REACT, AFRL, AFIT, ATTCs

EOS SLS

Markforged composite

3DS Zcorp

Concept Laser

Stratasys Objet

3DS ProX SLA

ATTC – Dayton Metal

(DMLM)

> EOS M100 (1)

> EOS M290 (11)

Polymer (FDM)

> Fortus 450mc (1)

> Fortus 900mc (3)

ATTC - Middle Georgia Metal

(DMLM)

> EOS M100 (1)

> EOS M290 (4)

Polymer (FDM)

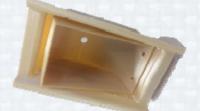
> Fortus 450mc (1)

> Fortus F900 (2)

Casting Tooling

Wheel Chocks

C-17 Anti-collision Light Guard


C-5 Latrine Cover

C-5 Service Door Hinge

Avionics Cooling Ducts

C-17 Utility Panel Housing Flashing

F-100 HPT Case Install/Lift Fixture

F-15 C/D Contactor Cover

C-5 Stair Ladder Fitting

Team Approach

Community Colleges

Universities

High Schools

U.S. AIR FORCE

May 2019