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More than 43% of the V-22 
airframe is built with 
composite materials 

Challenge: NDI of Large Scale Composite Structures

• Aggressive Non-Destructive Inspection 
(NDI) is integral to maintaining 
warfighter readiness

• Effective NDI detects the earliest indication of 
defects

• Components can be repaired or replaced before 
the structural integrity or performance of the 
aircraft is compromised

• NDI of composite aircraft presents 
challenges to current NDI 
methodologies

• No visual indications of damage

• Large areas must be inspected
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Conventional Approaches to Large Area NDI
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Challenge: NDI of Large Scale Composite Structures

A more effective NDI solution should address the 
complexities of composite aircraft inspection, and 
perform fast, 100% area inspection of large aircraft 
structures.
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Objectives

• Minimize inspection turnaround time

• No gantry / robot or fixed installation 
required

• Easily adaptable for inspection of 
multiple platforms

• Simplify interpretation / analysis

• Operate in open hangar

LASLAT (original 

concept)
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2016 DoD Maintenance Innovation Challenge

Large Standoff Large Scale Thermography

• Winner, 2016 DOD Maintenance Innovation Challenge
• Winner, 2017 Commercial Technologies for Maintenance Applications (CTMA) 

Technology Competition

(LASLAT)

NAVAIR SBIR 

N092-097, FRC-E
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Active Thermography Basics

• When we heat the surface of a sample, it cools in a predictable way.

• Deviations from predicted surface cooling behavior indicate the presence of a 
subsurface feature.

www.thermalwave.com

IR ImageT1 > T2

T1 T2

time

Heat surface

Heat conduction into part Thermal Equilibrium
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Typical Image Results
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warmercooler warmercooler

Delaminations obstruct the 

flow of heat and cause the 

surface to appear warmer.

Trapped water absorbs

incident heat and causes the 

surface to appear cooler.
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Large Scale Thermographic NDI

• A big part of the initial appeal of thermography

• Numerous attempts to implement

• Limited success
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Large Scale Thermography: ~1992
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2 operators to 

perform inspection 

(more to process 

and analyze)

Lap seam painted black
50 kJ energy (enough to 

blow out hanger circuits)

Single image result

• Inconclusive

• Post processed

Field test at FAA-AANC Validation Center
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Implementing Thermography
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Signal processing

ExcitationIR camera Processing

Thermography systems combine excitation, camera and image 

processing / viewing to match application requirements.
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IR Camera: 1986

• LN2 cooling

• $65K (1986 USD)

• Single detector

• Bi-directional mirror scan

• 8-bit analog output @ 30 Hz (pseudo)

• Actual frame rate ~ 8 Hz

• Sensitivity: ~ 0.100 K

• Resolution: Ambiguous

• Analog frame grabber 

• No direct digital data transfer

• Bandwidth limited – continuous data not available

• Tradeoff between dynamic range and sensitivity

• Many shots saturated, unusable

• PC ~ 16-33 MHz
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Inframetrics IR-600

U.S. Army TACOM
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Modern IR Cameras

Cost (K$)
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• High speed

• High resolution

• Low noise

Hobbyist

• Low speed

• Low resolution

• High noise
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Field of View vs. Min Detectable Flaw Size

Q: What is the largest target I can image?
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Field of View vs. Min Detectable Flaw Size

Q: What is the largest target I can image?

WRONG QUESTION!
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Field of View vs. Min Detectable Flaw Size

Q: What is the smallest defect I can reliably detect for a given area?
Q:  How many pixels must cover that defect for high POD?
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ASTM E2582-07: Minimum Flaw Size

• ASTM E07-2582: min 9 pixels coverage for 
reliable defect detection

• 9 pixels is very low (std developed for 320 x 256 
cameras, not 640 x 480 +)

• Field of view is determined by minimum flaw size, 
not size of target

Fiberglass skin  
/ foam core

Fiberglass

TSR 1D image

2'

imaged section defect

15 px

15 px
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Example: 0.5” Min Defect Size

640 pixels

480 pixels

21.33 in.

1
6

 in
.

0.5” diam flaw

Maximum field of view to resolve a 0.5” flaw 
with a 640 x 480 pixel camera is 21” x 16”
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Implementing Thermography
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Excitation Energy Issues

Commercial flash system

• 1 sq ft area coverage 

• 2 flashlamps (6 kJ ea.)

• Energy: 12 kJ

hood

1992 system flash system

• 4 sq ft coverage (2 x 2’)

• 8 flashlamps (6 kJ ea.)

• Energy: 48 kJ 

• Blew out hangar power

• Ignited nearby newspaper 

camera
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Excitation Choices

Halogen Lamp (500 W) Heat Gun (1800 W)Flashlamp (4800 J)

IR Lamp (250 W)Solar heating (600 W/m2 )Heat Blanket (10 W/in2)
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Source Duration

Truncated flash

Absorbed Energy vs Pulse Duration

Standard flash
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Extended Pulse Heating Tradeoff

heating period

t0

Signals of interest may be 

masked during heating period.

Heating and cooling occur simultaneously during extended heating
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Implementing Thermography
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Qualitative Thermography: Water Entrapment

Heat gun

Camera

Display

Water

Thermographic inspection of CH-47 Main Rotor Blade using heat gun 
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Thermographic Signal Reconstruction (TSR)
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• Fit raw log-log data with a low order polynomial to reduce temporal noise

• Convert back to T-t after fit

Original Concept (1999)

Patent 6,516,084 (US), EP1258136 B1 (EU)
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Temporal Noise Reduction

www.thermalwave.com

Raw TSR

Data courtesy of D. Balageas, ONERA

• TSR removes temporal noise from each pixel time history

• Lesson Learned: Noise reduction  signal enhancement  

• A prettier picture was not enough!
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TSR Derivatives of a Defect Free Slab
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TSR Derivatives Improve Detectability
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Raw TSR 2nd Derivative

• Fitting provides noise reduction

• Derivatives provide signal enhancement

Data courtesy of D. Balageas, ONERA
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+ +

0.167 msec

TSR Derivative Time Sequence
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+ +

0.500 msec

TSR Derivative Time Sequence
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+ +

1.5 sec

TSR Derivative Time Sequence
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+ +

4 sec

TSR Derivative Time Sequence
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Independent Validation- FAA POD Study 1
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Independent Validation- FAA POD Study 1
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12-20 Plies: Constant thickness and complex geometry flaws
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Independent Validation- FAA POD Study 2
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Independent Validation- FAA POD Study 2

www.thermalwave.com

“Overall, when both 90% PoD levels and false calls are considered, 
thermography provided the best overall performance.”
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Large Area Inspection Tradeoffs

• Coverage area limited by minimum flaw size

• Processing required for sensitivity / quantitative analysis

• Source duration may interfere with processing

Priorities

• Sensitivity to flaws of interest

• Probability of Detection 

• Inspection time

• Cost

• Ease of use
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V-22 Proprotor Inspection: Flash Thermography

Current NDI of V-22 
proprotor at FRC-E using TWI 
flash thermography system

• 4 hours
• 36 shots
• Close proximity

TSR processing of V-22 proprotor converts 36 shots into a single data set using TWI MOSAIQ software

21 ft
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2016 DoD Maintenance Innovation Challenge

www.thermalwave.com

• Minimize inspection turnaround time

• No gantry / robot or fixed installation required

• Easily adaptable for inspection of multiple platforms

• Simplify interpretation / analysis

• Operate in open hangar

Large Standoff Large Scale Thermography





LASLAT (original 

concept)

(LASLAT)

Developed under NAVAIR Phase II SBIR N092-097

Objective: Provide the capabilities of flash thermography from a 
distance in a system optimized for NDI of large composite structures
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2016 DoD Maintenance Innovation Challenge

LASLAT Projection Thermography

Synchronized Thermal 
Projectors

IR Camera

Scan system

Operator 
console

Large area inspection from a fixed position

• Automated area scan

• Produces single image of entire area

• Advanced signal processing

• No gantry, creeper or track

• Flat or curved surfaces

• Easily configured for new inspection

www.thermalwave.com

Working Distance: 10 – 15 ft
Single shot Field of View: 26 in x 21 in
Total Field of View: 17 ft x 15 ft (255 ft2)
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2016 DoD Maintenance Innovation Challenge

LASLAT Innovations

Optical correction over entire inspection field enables accurate defect sizing

uncorrected

LASLAT
corrected

LASLAT signal  processing outperforms existing NDI for 
detection of fluid ingress and impact damage.

Novel thermal projection optical system for 
highest efficiency excitation

TSR 
processed 

Unprocessed 

CH-46 Main Rotor Blade

F18 Wing Skin
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2016 DoD Maintenance Innovation Challenge

Current: Flash Thermography

LASLAT

Improvement to Current NAVIAR NDI

V-22 Proprotor Blade Inspection at FRC-E

• 4 hours
• 36 shots
• Close proximity

• 9 minutes 
• 18 shots
• 15 ft standoff

System is manually repositioned after each shot

Blade is automatically scanned by system at fixed position

19 ft
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2016 DoD Maintenance Innovation Challenge

V-22 Fuselage Inspection at FRC-E

Automated scan of inspection area
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2016 DoD Maintenance Innovation Challenge

V-22 Fuselage Inspection at FRC-E

Automated scan of inspection area

Image is built as scan progresses
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2016 DoD Maintenance Innovation Challenge

V-22 Fuselage Inspection at FRC-E

Automated scan of inspection area

Image is built as scan progresses
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2016 DoD Maintenance Innovation Challenge

V-22 Fuselage Inspection at FRC-E

V22 Fuselage: 6’ x 15’ inspection area
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2016 DoD Maintenance Innovation Challenge

V-22 Fuselage Inspection at FRC-E

Zoom view of inspection area in MOSAIQ  
Skin to 
frame 
disbond
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Improvements and Future Advancements

• Simultaneous processing and acquisition

• Real Time Processing / Analysis

• Real time FOD detection during layup

• Application Development
• Repair ID and Validation

• Through Transmission / Crushed Core

• Heat Damage
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Summary

• Min flaw size dictates max field of view

• Tradeoffs between optics, energy and POD

• LASLAT
• 80 sq ft / 9 min

• Configurable to range (50 ft max to date)

• TSR signal enhancement and data reduction

• Transportable – no infrastructure required

• Automated area scan
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