VISION

To be the provider of choice for aviation Maintenance, Repair and Overhaul capabilities and services

MISSION

To produce quality airframes, engines, components, and support equipment, and provide services that meet the Naval Aviation Enterprise’s aircraft ready for tasking goals with improved effectiveness and efficiency. (Best Value)
FRC Locations

- **FRC NORTHWEST**
 - NAS WHIDBEY ISLAND, WA

- **FRC WEST**
 - NAS LEMOORE, CA

- **FRC SOUTHWEST**
 - NAS NORTH ISLAND, CA

- **FRC WESTPAC**
 - NAF ATSUGI, JAPAN

- **FRC ASE**
 - SOLOMON'S ISLAND, MD

- **FRC SOUTHEAST**
 - NAS JACKSONVILLE, FL

- **FRC EAST**
 - MCAS CHERRY POINT, NC

- **FRC MID- ATLANTIC**
 - NAS OCEANA, VA

Key Statistics

- **6,000+ Sailors & Marines**
- **20 IMAs**
- **6,000 Engine / Module / Accessory Repairs**
- **580,000 Component Repairs**
- **$2.0 Billion Operation Mission Funded**

- **10,000 Civilians**
- **3 Depots + 1 GOCO Operation**
- **1,500 Engine / Module Repairs**
- **70,000 Component Repairs**
- **700 Aircraft Repairs**
- **$2 Billion Operation NWCF Funded**

- **10,000 Civilians**
- **3 Depots + 1 GOCO Operation**
- **1,500 Engine / Module Repairs**
- **70,000 Component Repairs**
- **700 Aircraft Repairs**
- **$2 Billion Operation NWCF Funded**

- **6,000+ Sailors & Marines**
- **20 IMAs**
- **6,000 Engine / Module / Accessory Repairs**
- **580,000 Component Repairs**
- **$2.0 Billion Operation Mission Funded**

Slide courtesy of Doug Greenwood and Ron Francis
The Industrial FRCs

FRC East

FRC Southeast

FRC Southwest
FRCSW Advanced Measurement Systems Reverse Engineering Lab (AMSREL)

- Formed c. 2008 to meet a growing need to digitally certify 3D models.
- ATI IPT grew the lab by seeking new hires and encouraging multiple equipment purchases.

Problem

- Some new manufactured parts (produced locally and by contractors) don’t fit on the aircraft or match off-aircraft parts.

Causes

- Human error creating a 3D model from a 2D print.
 - 2D prints can be extremely complicated, erroneous, non-dimensioned, and in some cases illegible.

Solution

- Utilize a metrology technology that can digitally compare a 3D model to an off-aircraft part.
FRCE Manufacturing Digital Data Center (DDC)

- Formed c. 2010 to meet a growing need to digitally certify 3D models.
- No formal lab to date, consists instead of organically imbedded engineering support staff aligned to the Manufacturing IPT.
- Extensive CAD/CAM resources, limited RE and AM capabilities
 - RE – FARO 9ft EDGE Arm (AAPCMM) with 3rd generation blue light laser scanner
 - AM – Stratasys FORTUS 900mc and 400mc Fused Deposition Modelers

Problem
- Some new manufactured parts (produced locally and by contractors) don’t fit on the aircraft or match off-aircraft parts.

Causes
- Human error creating a 3D model from a 2D print.
 - 2D prints can be extremely complicated, erroneous, non-dimensional, and in some cases illegible.

Solution
- Certify models to available 2-D technical data and authorize use thereof from an engineering. Employ RE when applicable to rectify discrepancies internal to drawings, or when compared to in-service components. perspective.
FRCE PMC

FRCE Precision Measurement Center (PMC)

- Formed c. 2000 to meet a growing need to measure with increased precision.
- Lab consists of 16 (11 CMM’s & 5 Laser Trackers) devices and 14 full time staff.
- All PMC assets are calibrated annually by the OEM IAW ISO 10360-2 Standards.
- PMC lab supports measurement functions for various fleet platforms including: AV-8B, CH-53, MH-53, C-130, H-1, V-22 and F-35.

CMM

- Engineering Investigations, First Article Inspections, Crash Damage Assessments, Dimensional Verifications, Calibration-Preventative Maintenance & Gold Plate items.
- Repeatable accuracy down to 0.4+L/850 μm (volumetric).
- Complete Gear, Blade, Vane and Engine component verifications.
- 3-D Model programming and 3-D probe scanning capabilities.
- Full Geometric Dimensional & Tolerancing and Characteristic Analysis

PORTABLE CMM

- Install, setup, reverse engineer and complete inspection capabilities of aircraft rework fixtures and specialty tooling.
- Avionic, Navigation and Weapon system alignments.
- Measurement volume of 3.5-262 feet.
- Two dedicated travel teams for all on-site setups, validations and inspections.
FRCSE

FRCSE Engineering

- Dedicated group formed c. 2012 to meet a growing need to digitally certify 3D models using the 3MS process.
- No formal lab to date, consists instead of organically imbedded engineering support staff aligned to the Manufacturing IPT.
- Extensive CAD/CAM resources, limited RE and AM capabilities
 - RE – Access to a FARO arm laser scanner, Leica T-Scan, and CMM, with a Handyscan 700 being purchased
 - AM – Stratasys FORTUS 400mc and uPrint SE Fused Deposition Modelers

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some new manufactured parts (produced locally and by contractors) don’t fit on the aircraft or match off-aircraft parts.</td>
<td>Human error creating a 3D model from a 2D print.</td>
<td>Utilize a metrology technology that can digitally compare a 3D model to an off-aircraft part.</td>
</tr>
</tbody>
</table>
| Human error creating a 3D model from a 2D print. | 2D prints can be extremely complicated, erroneous, non-dimensioned, and in some cases illegible. | }
Certified 3D Models

Manufacturing Model Management System (3MS)

- Created at FRCSW to add a higher level of scrutiny to 3D models prior to manufacturing.
- Similar processes used at all FRCs. Slight variances attributable to aircraft platform differences with state of incoming data: 2D vs. 3D, etc.
Metrology Tools

Articulated Arm Portable Coordinate Measuring Machines (AAPCMMs)

- Romer AAPCMM
- FARO AAPCMM

Laser Trackers

- Leica Laser Tracker
- Faro Laser Tracker

Surphaser Hemispherical Scanner

Other Scanners

HandySCAN Portable Scanner

Coordinate Measuring Machines (CMMs)

- Coordinate Measuring Machine - Small
- Coordinate Measuring Machine - Medium
- Coordinate Measuring Machine - Large
Metrology Tools

<table>
<thead>
<tr>
<th>Measurement Device</th>
<th>Model</th>
<th>Location</th>
<th>Quantity</th>
<th>Measurement Scale</th>
<th>Measurement Accuracy (in)</th>
<th>Typical System Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulated Arm PCMM</td>
<td>Romer w/ Scanner</td>
<td>FRCSW</td>
<td>2 (1)</td>
<td>Small-Medium</td>
<td>± 0.006</td>
<td>80K</td>
</tr>
<tr>
<td>Articulated Arm PCMM</td>
<td>FARO</td>
<td>FRCSW</td>
<td>(2)</td>
<td>Small-Medium</td>
<td>± 0.004</td>
<td>60K</td>
</tr>
<tr>
<td>Hemispherical Laser Scanner</td>
<td>Surphaser</td>
<td>FRCSW</td>
<td>1</td>
<td>Medium-Large</td>
<td>± 0.010</td>
<td>100K</td>
</tr>
<tr>
<td>Laser Tracker</td>
<td>API, FARO, Leica</td>
<td>FRCSW</td>
<td>1 (8)</td>
<td>Medium-Large</td>
<td>± 0.0006</td>
<td>Varies</td>
</tr>
<tr>
<td>Stationary Laser Scanner</td>
<td>Konica Minolta</td>
<td>FRCSW</td>
<td>1</td>
<td>Small</td>
<td>± 0.001</td>
<td>100K</td>
</tr>
<tr>
<td>*Portable Laser Scanner</td>
<td>Creaform HandySCAN</td>
<td>FRCSW</td>
<td>1</td>
<td>Small-Medium</td>
<td>± 0.0005</td>
<td>80K</td>
</tr>
<tr>
<td>Coordinate Measuring Machine</td>
<td>Brown and Sharpe, Zeiss</td>
<td>FRCSW</td>
<td>1 (2)</td>
<td>Small-Medium</td>
<td>± 0.000008</td>
<td>250K</td>
</tr>
<tr>
<td>Articulated Arm PCMM</td>
<td>FARO w/ Scanner</td>
<td>FRCE</td>
<td>1</td>
<td>Small-Medium</td>
<td>± 0.006</td>
<td>125K</td>
</tr>
<tr>
<td>Articulated Arm PCMM</td>
<td>Romer w/ Tube Probe</td>
<td>FRCE</td>
<td>1</td>
<td>Small-Medium</td>
<td>± 0.006</td>
<td>80K</td>
</tr>
<tr>
<td>Laser Trackers</td>
<td>FARO, Leica</td>
<td>FRCE</td>
<td>9</td>
<td>Medium-Large</td>
<td>± 0.0006</td>
<td>Varies</td>
</tr>
<tr>
<td>Coordinate Measuring Machines</td>
<td>Zeiss, Hexagon, Leitz</td>
<td>FRCE</td>
<td>10</td>
<td>Small-Medium-Large</td>
<td>± 0.000008</td>
<td>Varies</td>
</tr>
<tr>
<td>Laser Tracker</td>
<td>Leica</td>
<td>FRCSE</td>
<td>4</td>
<td>Medium-Large</td>
<td>± 0.0006</td>
<td>120K</td>
</tr>
<tr>
<td>Stationary Laser Scanner</td>
<td>FARO</td>
<td>FRCSE</td>
<td>4</td>
<td>Small</td>
<td>± 0.002</td>
<td>100K</td>
</tr>
<tr>
<td>Portable Laser Scanner</td>
<td>Creaform HandySCAN</td>
<td>FRCSE</td>
<td>1</td>
<td>Small-Medium</td>
<td>± 0.0007</td>
<td>66K</td>
</tr>
<tr>
<td>Coordinate Measuring Machine</td>
<td>Zeiss</td>
<td>FRCSE</td>
<td>3</td>
<td>Small-Medium</td>
<td>± 0.000008</td>
<td>250K</td>
</tr>
</tbody>
</table>

* – Future Acquisition
() – Assets managed outside AMSREL
Data Acquisition for Dimensional Analysis
Laser scanning a physical part or aircraft creates a cloud of discrete points, each with an XYZ location in space.

When overlaid onto a 3D model, it is possible to measure the distance of each point to the nearest surface.

This geometric analysis can show:
- If a wall is too thick or too thin
- If a rib or flange is mislocated
- If a geometry is missing
- If a hole is out of tolerance
- If a wall height is incorrect

In short, laser scanners can be used to compare a 3D model to a physical part.
Laser scanning a C-130 blade during buildup of a prop to ensure acceptable blade angle for full feathered and reversed conditions.
Laser scanning F-35 engine intake doors and door opening to analyze fittment issues.

Data was acquired by mounting the FARO scanarm to the back of an aircraft using the suction cup base and hand-actuated vacuum pump.

This geometric analysis showed:
- Dimensional inconsistencies on both aircraft and door sides
- Warp in the door skins
Dimensional Analysis

Digital Go, No-Go Gauging of Locally Manufactured Components

Datum Based Alignment

Iterative Alignment
Acceptance/Rejection of OEM/Vendor produced components:
- H-53 structural corner fitting where tail transition section mounts to aft cabin
- Flight Critical Safety Item
- Extremely difficult to interpret forging and finish machining drawing with 320+ dimensions
- Substituting machining from forged billet
Dimensional Analysis

Tube Length, Rotation, & Angle (LRA) measurement
Dimensional Analysis

Measurement Alignment (Facility Workload)
We dimensionally verify a large majority of the rework fixtures that are located throughout the facility. These fixtures are verified on an annual basis to ensure that all specifications to the original O.E.M drawings are met. Examples of this workload would include the following:

- AV-8 Crash Damage Maintenance Fuselage Fixture
- AV-8 Crash Damage Maintenance Wing Fixture
- AV-8 Flap Assembly Fixtures
- AV-8 Rudder Assembly Fixtures
- AV-8 Canopy Repair Fixtures
- UH-1Y Fuselage Repair Fixure
- UH-1N Fuselage Repair Fixure
- UH-1/AV-8 Tail Boom Repair Fixture
- AH-1W Fuselage Repair Fixure
- CH-53E Tail Pylon Repair Fixure
- CH-53E Overhead Door Repair Fixure
- CH-53E Fuselage Transition Repair Fixure

Measurement Alignment (Fleet Workload)
We are routinely required to measure various fleet alignments for special avionic, navigation or weapon systems that are either first time modification requirements or to realign systems that have either encountered a “hard landing” or been removed for various rework procedures. Examples of this workload would include the following:

- AH-1W E.G.I (Embedded GPS/Inertial Navigation System)
- CH-46 DIRCM (Directional Infrared Radar Counter Measure) Alignment
- CH-53 DIRCM (Directional Infrared Radar Counter Measure) Alignment
- V-22 FLIR (Forward Looking Infrared Radar) Alignment
- V-22 LWINS (Light Weight Inertia Navigation System) Alignment
- V-22 DIRCM (Directional Infrared Radar Counter Measure) Alignment
- H-60B/R ALQ-205 (Omni-directional infrared countermeasures) Alignment
- CH-46 Drive Shaft Alignment
- CH-53 Drive Shaft Alignment
- AV-8 Boresight Weapon Systems Alignment
- AH-1W Boresight Weapon Systems Alignment
- H-3 Doppler Radar Installation/Alignment

Laser Tracker -- Alignment

Equipment Specifications
- Working temperature: +0° C to +40° C (32°F to 104°F)
- Measurement Volume (Working Range of the Tracker): 1.0– 80.0 m (3.3 – 262 ft.)
- Measurement Uncertainty: +/- 15 μm + 6 μm/m (+/- 0.0006” + 0.00007”/ft)
Dimensional Analysis

Touch Probe CMM Inspection

<table>
<thead>
<tr>
<th>Tool Brand</th>
<th>Model</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEISS</td>
<td>ZMC-550</td>
<td></td>
</tr>
<tr>
<td>ZEISS</td>
<td>PRISMO ULTRA</td>
<td>12-24-10</td>
</tr>
<tr>
<td>HEXAGON</td>
<td>GLOBAL</td>
<td>5-7-4</td>
</tr>
<tr>
<td>HEXAGON</td>
<td>GLOBAL</td>
<td>5-7-5</td>
</tr>
<tr>
<td>HEXAGON</td>
<td>ADVANTAGE</td>
<td></td>
</tr>
<tr>
<td>HEXAGON</td>
<td>GLOBAL</td>
<td>7-10-7</td>
</tr>
<tr>
<td>HEXAGON</td>
<td>DEA GLOBAL</td>
<td>12-60-12</td>
</tr>
<tr>
<td>HEXAGON</td>
<td>GLOBAL</td>
<td>9-12-8</td>
</tr>
<tr>
<td>Leitz</td>
<td>PMM 60-38-25</td>
<td></td>
</tr>
<tr>
<td>Leitz</td>
<td>PMM ULTRA</td>
<td>12-10-6</td>
</tr>
</tbody>
</table>
Data Acquisition for Damage Modeling
Beyond a simple deviation analysis, it is also possible to model (reverse engineer) physical damage into 3D models. Damage examples include:

- Artisan blending
- Dents
- Mislocated holes

This is typically used to aid in repair design, to quantify damage, and to perform FEA on as-damaged models.
Stainless steel structural repair fitting for a V-22 bulkhead frame:

- Difficult material to machine
- Tight tolerances
- Unpredictable tooling overcut during finish machining operation
- Yielded thin-wall condition at a filleted transition between flanges in the proximity of the primary load path

The resultant OOT condition was measured and modeled into the solid body for analysis purposes to determine acceptability in the as-is condition.

Parts were unusable; the analysis showed failure in the thinned area under load. CNC toolpath was corrected and new parts were produced.
Damage Modeling

F-18 Spar Blend and Analysis

- An area of the spar was blended due to corrosion.
- The blended area could not be hand measured, so it was scanned and the damage was modeled in NX.
- The modeled area was then able to be analyzed
Data Acquisition for Reverse Engineering
Reverse Engineering

Creating a solid model with limited or no technical data

- Uses the physical part as the nominal
- Can use a combination of scan data and traditional measurement techniques

End uses include, but are not limited to:
- Manufacturing (non-critical)
- Finite Element Analysis
- Technical data creation
- Job Performance Aids
- Inspection models
- Custom fittings and tooling
- Artisan aids
- Support equipment

Possible Issue: Design Intent vs Scan Data

Best-fit circle
Radius: 6.2798”
X: -0.0022”
Y: 12.9271”

CAD circle
Radius: 6.28”
X: 0.0”
Y: 12.925”

Design Intent?
Reverse Engineering

Task: Create a solid model of a servocylinder assembly
Existing Technical Data: none
Intended Use: FEA
Tools Used: PCMM, micrometer, gage pins

Scan assembly and fit the data to a coordinate system
Model using the scan data, one feature at a time
Assemble CAD models
Reverse Engineering

Task: Create a solid model of an Abrams tank
Existing Technical Data: none
Intended Use: radar signature analysis
Tool Used: hemispherical laser scanner

Mesh used as guide to help model

Point Cloud to Triangular Mesh

3D Model
1:1 scale
FRCE Digital Data Center was contacted to produce a solid model from a demo assembly of a door brace tool. Using a FARO Edge Arm and a FARO Laser Line Probe, raw point cloud data was collected into Geomagic Design X from the disassembled parts. The point clouds were cleaned and processed into planes, wireframe sketches, and reference surface bodies. This information was imported into CATIA and used to create a solid model for each of the components of the assembly. For downstream ease-of-use, planar features and common shapes were used to best approximate the disparate surface and wireframe bodies from Design X. The resulting solid bodies were compared to the original point cloud data using Geomagic Control to ensure minimum deviation between the final product and initial data.
Reverse Engineering

Task: Create a surface model of an AV-8 Intake
Existing Technical Data: Poor quality drawings
Intended Use: Intake cover design data
Tool Used: Faro Scanarm
Direct Digital Manufacturing
Category 1: Simplistic
Manually milled or turned simplistic features such as holes, bores, simple cuts, etc.

Category 2: Fairly Simple
Lathe parts not requiring C-axis capability and similar processes for straight bushings, hat bushings, shafts, etc.

Category 3: Moderately Complex
3-axis milled parts, C-axis lathe parts, parts requiring multiple setups, intricate internal cuts, millings/engravings, etc.

Category 4: Complex
4-axis CNC milled parts with multiple arcs, curves, internal features, etc. that are difficult to measure. Requires rotation and/or closed angles.

Category 5: Highly Complex
5(+)-axis CNC milled parts with complex lofted surfaces and complex datum definitions. Free shapes, swarf, compound angles, closed pockets.
Composite Manufacturing
Sheet Metal Manufacturing

Category 1: Simplistic
Flat parts governed by 2D geometry and material thickness. Washers, tabs, etc.

Category 2: Fairly Simple
Thin, malleable material with no closed angles, tight radii, or tight tolerance band. Box and pan brake, simple form block for machine presses, 6061-O aluminum, etc.

Category 3: Moderately Complex
Medium thickness, relatively malleable, closed angles up to 100 degrees, moderately tight radii, compound bends, medium tolerance. CNC brake, hand bent or machine pressed with block, stainless steel, etc.

Category 4: Complex
Hydro-formed with limited additional features such as joggles, closed angles over 100 degrees, and tight radii. Fairly thick, non-malleable. Small tolerance band. Requires multiple form blocks, return flange, titanium, CNC bent pneudraulic tubing, etc.

Category 5: Highly Complex
Hydro-formed sheet metal components with multiple complex features as listed in Category 4, as well as additions such as stiffening beads, lightening holes, etc. Composite tooling and Additively Manufactured tooling.
Additive Manufacturing

Sheet Metal Tooling
Form Blocks for hydroforming presses, FDM Polycarbonate, TRL 9

Form-Fit-Function/
Rapid Prototyping
Model Verification, Fit-Up in Aircraft, FDM PC & ABS, TRL 9

Shop Tooling
Guides, Jigs, Fixtures, Work Aids, Visualization Aids, Chemical milling templates, FDM PC & ABS, TRL 9

Composite Tooling
R&D Work - CTE of AM Materials, PFP Reversal Tools, FDM & BAAM System, PPSF / In Autoclave, TRL 6-7

On-Aircraft End-Use Parts
NON CRITICAL PARTS.: Near Term Work in Progress, FDM or SLS, TRL 6-7 FLIGHT CRITICAL PARTS: NAVAIR AM Demonstration Project, Longer Term: EOS Metal Powder Bed, TRL 1-6 (depending on process and material)
Direct Digital Manufacturing

Focus: Additive Manufacturing
Additive Manufacturing

Synergizes well with laser scanning, providing a rapid, cost-effective way to manufacture custom, complex, organically shaped parts, and support equipment using little or no technical data.

<table>
<thead>
<tr>
<th>Department</th>
<th>Activity</th>
<th>Activity</th>
<th>Location</th>
<th>State</th>
<th>Company</th>
<th>Model</th>
<th>Process</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC East</td>
<td>MCAS Cherry Point</td>
<td>NC</td>
<td>Stratasys</td>
<td>Fortus 900mc</td>
<td>Fused Deposition Modeling</td>
<td>ABS, PC, Ultem, PPSF</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC East</td>
<td>MCAS Cherry Point</td>
<td>NC</td>
<td>Stratasys</td>
<td>Dimension SST</td>
<td>Fused Deposition Modeling</td>
<td>ABS</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC East</td>
<td>MCAS Cherry Point</td>
<td>NC</td>
<td>Stratasys</td>
<td>Fortus 400mc</td>
<td>Fused Deposition Modeling</td>
<td>ABS, PC, Ultem, PPSF</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southeast</td>
<td>NAS Jacksonville</td>
<td>FL</td>
<td>Z-Corp</td>
<td>Spectrum Z510</td>
<td>Jetted Binder</td>
<td>Zp150 Powder, Zb60 Binder</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southeast</td>
<td>NAS Jacksonville</td>
<td>FL</td>
<td>Stratasys</td>
<td>Fortus 400mc and 450</td>
<td>Fused Deposition Modeling</td>
<td>ABS, PC, Ultem, PPSF, ABS-M30</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southeast</td>
<td>NAS Jacksonville</td>
<td>FL</td>
<td>Stratasys</td>
<td>Fortus 900mc</td>
<td>Fused Deposition Modeling</td>
<td>Ultem 9085, Nylon</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southeast</td>
<td>NAS Jacksonville</td>
<td>FL</td>
<td>Keystone</td>
<td>Modified Sciaky</td>
<td>Electron Beam</td>
<td>Metals (multiple)</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southeast</td>
<td>NAS Jacksonville</td>
<td>FL</td>
<td>Stratasys</td>
<td>Uprint SE</td>
<td>Fused Deposition Modeling</td>
<td>ABS</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southwest</td>
<td>NAS North Island</td>
<td>CA</td>
<td>3D Systems</td>
<td>iPro 8000</td>
<td>Stereolithography</td>
<td>Accura 25</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southwest</td>
<td>NAS North Island</td>
<td>CA</td>
<td>3D Systems</td>
<td>sPro 60 HD</td>
<td>Selective Laser Sintering</td>
<td>Duraform PA</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southwest</td>
<td>NAS North Island</td>
<td>CA</td>
<td>Stratasys</td>
<td>Dimension SST</td>
<td>Fused Deposition Modeling</td>
<td>ABS</td>
</tr>
<tr>
<td>DoD</td>
<td>NAVAIR</td>
<td>FRC Southwest</td>
<td>NAS North Island</td>
<td>CA</td>
<td>Stratasys</td>
<td>Fortus 400mc</td>
<td>Fused Deposition Modeling</td>
<td>Ultem, PC, PC-ABS, ABS-M30</td>
</tr>
</tbody>
</table>
Additive Manufacturing

F-18 3D Printed Tooling

• All required tooling including the form block, chem. mill trim template, and check templates were created on the Fortus 400mc.
• New tooling can be printed quickly when the existing tooling is damaged now that the design has been verified.
• The combination of the 3D printer and chemical milling allows the brackets to be manufactured correctly and without defects.
Combining AM with laser scanning and reverse engineering

Laser Scanning Solid Modeling 3D Printing

Engineering Investigation
Test Apparatus Parts

Aircraft Masking for PMB
Additive Manufacturing

Problem:
Unable to mate a custom drill to an OTS holding apparatus.

Solution:
Laser scan the drill and the apparatus and design a fixture. End-use 3D printed parts were delivered in 4 business days.

Benefits of AM vs Traditional MFG:
- Rapid solution delivery
- Low cost
- Design freedom
Additive Manufacturing

EEC Holding Fixture

What Is It?
The Heads Up Display (HUD) Electronic Equipment Control (EEC) Holding Fixture is a piece of support equipment that secures an avionics unit to an avionics test bench. It is designed to hold the EEC at an ergonomic angle, provide airflow to its internals, and electrically ground it.

Who Uses It?
The CASS TPS Development Team designs, integrates, tests, evaluates, and supports the production and fielding of Automatic Test Equipment (ATE) hardware and software used by the warfighter and depot artisans before turning it over to the respective FST for ISE support.

Reverse Engineering Process
Using laser scan data of the EEC and 2D prints of the existing fixture, an enhanced version was designed that is optimized for 3D printing rather than traditional manufacturing.

Design for Additive Manufacturing
The fixture was designed to minimize build time by removing the necessity for support material wherever possible. This design also focused on reducing assembly part count.

Business Case
- Reduced development time through rapid design/prototype/test cycles
- Reduced logistics costs due to production on demand capability
- Significantly reduced production cost and schedule due to manufacturing simplification

Project Future
- This proof of concept is a significant step forward in the adoption of additive manufacturing by our CASS Development Team.
- The goal is for future designs to fully utilize Design for AM concepts and AM technologies for production.

Captured Nuts (x4)

Pressure Transducer

Ground

Consolidated Automated Support System (CASS)
Provides electrical inputs into the avionics under test and evaluates the responses for a pass or fail condition.

Stratasys Fortus 400MC
Fused Deposition Modeling
Material: ABS-M30

What Is It?
The CASS TPS Development Team designs, integrates, tests, evaluates, and supports the production and fielding of Automatic Test Equipment (ATE) hardware and software used by the warfighter and depot artisans before turning it over to the respective FST for ISE support.

Who Uses It?
The CASS TPS Development Team designs, integrates, tests, evaluates, and supports the production and fielding of Automatic Test Equipment (ATE) hardware and software used by the warfighter and depot artisans before turning it over to the respective FST for ISE support.

Reverse Engineering Process
Using laser scan data of the EEC and 2D prints of the existing fixture, an enhanced version was designed that is optimized for 3D printing rather than traditional manufacturing.

Design for Additive Manufacturing
The fixture was designed to minimize build time by removing the necessity for support material wherever possible. This design also focused on reducing assembly part count.

Business Case
- Reduced development time through rapid design/prototype/test cycles
- Reduced logistics costs due to production on demand capability
- Significantly reduced production cost and schedule due to manufacturing simplification

Project Future
- This proof of concept is a significant step forward in the adoption of additive manufacturing by our CASS Development Team.
- The goal is for future designs to fully utilize Design for AM concepts and AM technologies for production.
Additive Manufacturing

V-22 Support Equipment

Socket to manually rotate nacelle while in hangar. Not captive – tends to slip off.

Wing

Fuselage

Nacelle

Tilt-Axis actuation screw

Socket Retention Tool

Socket to manually rotate nacelle while in hangar. Not captive – tends to slip off.
Large Stretch Press Die

What Is It?
Large scale sheet metal forming die for use in the stretch forming press. Tools for this process are traditionally sand cast from molten Kirksite, a Zinc/Aluminum alloy. This tool is a ¼” thick polycarbonate shell which has been back-filled with plaster.

Who Uses It?
Depot Artisans known as Pattern Makers digitally design, additively manufacture, and traditionally use these types of tools.
Additive Manufacturing

TIME-LINE

- 07 JUNE 14
 - Loss of Nose Landing Gear
 - Controlled Hard Landing
- 07 – 25 JUNE 14
 - Damage Assessment & Repair Strategy
 - FST Structural Analysis
 - OEM CAD Solid Modeling
- 25 JUNE (Wednesday)
 - Receive OEM solid model of damaged frame
 - Begin repair & tool design
- 26 JUNE (Thursday)
 - Form block designs complete
 - Begin AM builds at ~1700
- 27 JUNE (Friday)
 - Design & produce flat patterns
 - AM tool build parts complete
- 28 JUNE (Saturday)
 - Form C, L & Z doublers using rubber & bladder presses
 - Begin heat treat
- 30 JUNE (Monday)
 - Paint 1st set
 - Manufacture 2nd set backup parts
 - Heat treat 2nd set on second shift
- 01 JULY (Tuesday)
 - Paint 2nd set
- 02 JULY (Wednesday)
 - Deliver finished parts to FST

Part Forming Form upper lip using Stage 1 block
- Reverse part and place in Stage 2 block
- Attach cover block
- Form lower lip
- Polycarbonate, FORTUS 400mc

L Angle Block Tool & Part

Part Forming
- Form two Channels
- Cut the channels to form L Angle parts
- Polycarbonate, FORTUS 900mc

Z Block Stage 1

Z Block Stage 2

Z Block Stage 2 with Cover

✓ 3D CAD SOFTWARE TOOLS
✓ 3D SOLID MODEL DATA
✓ ADDITIVE MANUFACTURING TECHNOLOGIES
✓ MADE THE ONE WEEK TURN AROUND POSSIBLE
Additive Manufacturing

SHOP TOOLING (VISUAL AID)

UH-1Y Bathtub Fitting Repair

- Rotor Brake failure caused catastrophic damage to web and upper flange

Difficult to depict cut lines for material removal Web, upper contoured flange, and fillet radii in pocket must be removed
Chemical Milling Template
For AV-8 Bullet Fairing Skin

- Pockets were **reverse engineered** with FARO scanner
- Savings of hundreds of man-hours per each unit over traditional, hand layup methods
Additive Manufacturing

Medium Scale Polymer Autoclave Tooling Trial
Additive Manufacturing

FAB LAB - WHAT IS IT?

- Mobile Lab - A platform to train O & I Level Maintainers, Artisans and others in 3D Design & Digital Manufacturing (Additive & Subtractive)
- Workforce Development
 - Educate & Engage O & I Level personnel, artisans and others in a risk tolerant setting to use 3D CAD design and digital manufacturing tools (additive & subtractive) to take their own ideas from concept to prototype in support of an improved maintenance and operating environment.
 - Bottom-up vs. top-down solutions
- DARPA (MENTOR) & ONR Funding
- One On-Site Lab (Operational)
 - NAVSEA MARMC, Norfolk, VA
- Three Mobile Labs
 - NAVAIR FRCE, Cherry Point, NC
 - NAVSEA SERMC, Mayport, FL
 - NAVSEA SWRMC, San Diego, CA
- Contractors
 - Bennett Aerospace, Cary, NC (Prime)
 - Tech Shop, San Jose, CA (Sub to build & equip the Mobile Labs and to provide training)

Equipment Proposed:
- 10 Laptop PC's (with open source 3D CAD)
- 3D Scanner
- 3 Consumer grade 3D Printers (FDM)
- 2 Table Top CNC Mills
- 1 Laser Cutter & Engraver
- 1 CNC Router
- 1 Bench Mount Drill Press
- 1 Vacuum Former
- Misc. Hand and Power Tools
- Shop Supplies, Spare Parts & Initial Stock of Raw Material

Trailer Details:
- 10 x 35 foot bumper pull Trailer
- Wired for external power 110/240V
- Light fixtures & outlets (surge protected)
- Internal network wiring with external Ethernet jack
- Air Compressor
- Adjustable locking rail system for customizing layout.
Thank You

Price, R. David
FRCSW Reverse Engineering Lab
Richard.d.price2@navy.mil
(619) 545-6995

Renstrom, Michael
FRCSE F/A-18 Manufacturing Project Lead
michael.renstrom@navy.mil
(904) 790-6251

Reynolds, Justin
FRCE MBD Lead
Justin.d.reynolds@navy.mil
(252) 464-8383