Model Based Definition overview

A-18F

• Presenter

- John Schmelzle
 - SE Design and Analysis Branch Head, NAVAIR

Session Highlights

- Different from PLM
- Why MBD?
- What is MBD?
- Why Neutral
- Benefits of MBD
- MBD and AM

Different then PLM

- PLM is an essential part of a model based enterprise
- However, integrating a PLM system alone will not:
 - Create a model based enterprise
 - Satisfy long term archiving requirements
 - Provide a neutral file format
- Provide a TDP with an independent approval indicator (Y14.100M)
 - Per ASME Y14.100, an approval indicator must be:
 - unique to an individual,
 - capable of verification, and
 - under the individual's sole control.

Why 3D MBD

NAVMAIR

- Model Based Definition (MBD) is the practice of using 3D digital data (models) combined with other data, such as 3D dimensions and tolerances, within 3D CAD software to provide a technical definition for individual components and product assemblies.
- The goal of MBD is to create 3D technical data packages (TDPs) to be used for manufacture, logistics, and acquisition.

PDDS vs. MBD in Engineering

PDDS:

- Fully Annotated Model:
 - Model Used similar to conventional 2D drawing.
 - Fully dimensioned.
 - Part not defined by the model, but is defined by the dimensions on the model.
- 2D Drawing with an Associated Model:
 - Similar to the fully annotated model;
 - Has 2D drawing with associated model.

MBD:

- Different from the fully annotated model
- Model itself defines the part
- In true MBD, dimensions are optional and only used at the discretion of the cognizant engineer.
- The model is toleranced geometrically often using surface profile tolarancing. Accuracy of model becomes critical.
- **Need for Verification**

Sheet 1

 Critical metadata and traditional drawing information

Sheet 2

- 3D visualization file
- Embedded attachments
 - STEP 214 neutral file
 - STEP file used for import to drive downstream CAM equipment
 - Validation certificate

- Legal requirement
 - Utilization of a neutral file format eliminates the risk of a legal challenge to a procurement
- Long Term Archiving
 - Typical DoD development life cycle is 20+ years
- Translation Issues

Proprietary and Open Format Considerations

- The intellectual property belongs to the developer regardless of how much detail is provided to the third-party application providers.
- The developer has control over the definition of the standard, and can change it at will with or without the advice and consent of the user community.
- The developer can also determine who has access to the format and for what purpose, regardless of the value to the user community.

- Realized benefits
 - 30% reduction in part fabrication
 - 10% reduction in other areas

	Expected Savings Generated through MBD		
Commodity	Annual Funding	Savings (%)	Savings (\$)
Part fabrication	\$10,000K	30%	\$3,000K
Assembly	\$2,000K	10%	\$200K
QA	\$2,000K	10%	\$200K
		Total Savings:	\$3,400K

- Expected benefits
 - 30% reduction in engineering time
 - Not realized in pilot due to full 3D dimensioning of models (done to ease transition from drawing downstream)

- Improved communication and collaboration of engineering, manufacturing, and all project stakeholders
- Reduction in cycle time for new designs process
- Significant manufacturing error reduction resulting in significant cost-savings in avoidance of rework
- More effective allocation of resources

Additive Manufacturing & MBD

 Additive manufacturing (AM), also known as 3D printing, is a potentially disruptive technology that is likely to profoundly affect the Navy.

Additive Manufacturing

Hydraulic Manifold used in the V-22 Drag Strut Retract Actuator Test Stand

Design Accomplishments

- 70% reduction in weight
- Smaller foot print
- Improved fluid flow
- Fewer leak points

Generated by Penn State ARL

Application & Benefit

- Design driven manufacturing
 - Do not have to design for manufacturing producibility
- Design limited only by human imagination
 - Topology Optimization
- Complexity does not increase cost
- Ability for mass customization
- Rapid qualification of small lots of parts..

Challenges

- 3D CAD models are often not suitable to ensure manufacturing quality
- Capability to procure 3D models
- Capability to inspect 3D models
- Development of 3D Technical Data Package that incorporates a model-based definitions
- Material & AM process qualification

AM & MBD

- AM offers the ability to create complex designs never before imagined
- Many of these designs are too complex to document in a conventional 2D drawing

Picture of the 3D Manifold

NAV

• Only through MBD, can these new designs be properly documented.

AM & MBD

Next MBD Project

E-2D Rotodome Antenna Maintenance Stand

СТМА

• CTMA Project Phase I (\$100K)

- 3D TDP Format
- 3D TDP Standard Practices
- Model Validation/Verification
- CTMA Project Phase II (TBD)
 - Workflow automation
 - PLM Integration
 - Validation of 3D PDF graphics
 - MBD Expansion, (Other Bases, CAD Platforms, PLM Systems)

NAVMALR