

The Intermittent Testing Void

Ken Anderson Universal Synaptics 801.731.8508 www.USynaptics.com @USynaptics

© Copyright 1995 – 2015, Universal Synaptics Corporation. All Rights Reserved

No Fault Found:

- ARINC 672 Guidelines for The Reduction of No Fault Found (NFF)
 - Emphasis on increased technician training
 - Improved data collections systems and analysis
 - Nothing included in the 672 Guidelines to address technology / diagnostics gaps
 - NFF costs a typical US commercial carrier approximately \$250k per year per aircraft
 - NFF cost the Department of Defense (DoD) between \$2B \$10B annually
- Universal Synaptics supports ARINC 672 Guidelines
 - Over 20 years experience in NFF remediation and solutions
 - Focus on improved diagnostics capability to address intermittent faults in Line Replaceable Units (LRUs) and EWIS which has been conclusively linked as a significant contributor to NFF
 - Research and practical application has demonstrated significant reductions in NFF when all three are applied to the NFF problem

Increased Training, Improved Data and Advanced Diagnostics

The Problem:

- Aircraft electronic LRUs test "No Fault Found" (NFF) approximately 50% of the time
 - Box malfunctions intermittently during flight, but tests good during subsequent ground testing
 - Intermittent activity also categorized as RTOK, CND, NTF or even "gremlins"
 - Intermittent discontinuity is a growing problem in electronic systems
- Intermittent faults are mechanical in nature
 - Failures are in wiring, solder joints, wire wraps, connectors, via's etc.
 - Modern components are more reliable and capable intermittent discontinuity a major concern and cost driver

No Fault Found costs the DoD between \$2 and \$10 Billion annually

Conventional Approach:

- Functional ATE and Continuity testers cannot detect and isolate intermittent faults that cause NFF
 - Tests only one function at a time
 - Tests only one circuit at a time, even when connected to multiple circuits
 - Digital averaging, scanning and sampling masks / misses the intermittent faults – a testing "blind spot" / "testing void" exists
 - LRUs are not tested in an operational environment where the failures occur
 - Only designed to find functional failures, failed components and "hard" failures (opens circuits / short circuits)
 - The nodal architecture of LRUs prohibits multi-plexing
 - Intermittent faults that cause NFF do not follow specific failure patterns

Conventional Approach = Conventional Results

MX and Supply Impact:

- Tools provided to maintainers are not sufficient:
 - Just because a UUT passes BIT or ATE tests multiple times in a row, does NOT mean there isn't a failure
 - BIT / ATE testing does not check all circuits simultaneously or functional paths in an LRU or connection paths to SRUs
 - ATE does not test in an operationally relevant environment
- Flightline "Blacklisting" of LRUs makes an expensive supply problem worse
 - Creates availability issues
 - Masks the real problem (undetected intermittence)
 - Recirculates "bad actors" to other military units and commercial carriers, thus perpetuating the problem

An Innovative Solution is Needed to Solve This Problem

Operational Impact:

- High MICAP rates
 - Missions canceled / postponed
 - Readiness is negatively impacted
- High NFF / RTOK / CND rates
 - Wasted I / O / D-level maintenance resources and supply man-hours
 - Wasted time on supply documentation, transportation and troubleshooting
- Supply chain becomes more expensive and less responsive
 - Each LRU sent to the depot for a non-fix, unnecessarily wastes Combat and Support Commands millions of dollars each year!
 - High availability (even a 100% production fill rate) does not equal high reliability or weapon system readiness

The DoD MX Enterprise is large, global, complex and costly. Change is required to reduce NFF & improve operational availability

Intermittent Faults:

• Three Stages to an intermittent fault:

Intermittent Fault Detection Science

Conventional ATE

- Measures only one circuit at a time, even when connected to multiple circuits
- Filters and averages out intermittent events that cause NFF

IFDIS

No missed defects!

 Hardware Neural-Network monitors ALL circuits, simultaneously and continuously with high sensitivity

Conventional Tester Probability of Detecting a Random Intermittent Event

.03% detection probability

IFDIS & Voyager Probability of Detecting a Random Intermittent Event

99.99% detection probability

Intermittent Faults, Physical Effects:

- Cracked solder joint
- Broken wire
- Loose crimp connection
- Loose or corroded wire wrap
- Corroded connector contact
- Sprung connector receptacle
- Deteriorated wire insulation
- Hairline crack in printed circuit trace
- Unsoldered connection

Physical Manifestations, Not Electronic Component Failures

Identifying IFDIS Test Candidates

Collect Maintenance and Performance Data

Universal Synaptics NFF Solutions:

- Ncompass-Voyager[™] and the Intermittent Fault Detection & Isolation System[™] (IFDIS[™])
- Advanced all lines all the time circuit monitoring
- Proven technology that reduces NFF and improves system availability while reducing cost
- TRL 9 solutions

"If we're going to keep the advantage that we've historically had then we need to keep up [technologically]."

- Secretary of Defense Ash Carter

Ogden Air Logistics Complex

USAF Intermittence Testing

Mr. Les Stone Director 523rd EMXS

JTEG Intermittence Forum 2015

Air Force Problem

OGDEN AIR LOGISTICS COMPLEX

Conventional testers were unable to detect the problem in F-16 Modular Low Power Radio Frequency (MLPRF) LRUs 51% of the time

Discovered chassis intermittent circuits in 1999

- Using a microscope, found ribbon cable had cracked solder joints
- MLPRF SRUs had 90% NFF rate
- Initiated massive ribbon cable re-soldering program
- No depot tester could detect intermittent circuits

OGDEN AIR LOGISTICS COMPLEX

- Discovered IFDIS capability in 2006
- Stood up two systems in 2009 through SBIR Phase III vehicle
 - One in F-16 MLPRF repair shop
 - One in "Bad Actor" laboratory
- IFDIS Tested over 400 MLPRFs
- Over 28 times (\$62M) return on investment in less than three years

MLPRF Chassis

OGDEN AIR LOGISTICS COMPLEX

MLPRF Ribbon Cable & Wiring

OGDEN AIR LOGISTICS COMPLEX

MLPRF With ITA Installed

OGDEN AIR LOGISTICS COMPLEX

MLPRF Results

OGDEN AIR LOGISTICS COMPLEX

- Intermittent faults detected and isolated in over 60% of the units IFDIS tested (over 400 MLPRFs)
- Increased Mean Operating Hours Between Depot Repair from 290 to 926 hours (Tripled)
- Near the top of the MICAP list for over a decade, now not even on the MICAP list
- Troubleshooting time reduced by over 50%

OGDEN AIR LOGISTICS COMPLEX

IFDIS testing F-16 Radar Antenna, CADC and C-17 Power Supply

Stood up 8000+ channel system in Jan 2015

- Capable of testing F-16 Programmable Signal Processor (PSP) – Unreliable & costly to sustain
- Plan to expand IFDIS testing to many LRUs
- Will be capable of testing virtually any LRU in the USAF inventory, as well as Joint Service LRUs

8000 channel IFDIS

OGDEN AIR LOGISTICS COMPLEX

F-16 PSP

OGDEN AIR LOGISTICS COMPLEX

Air Force Summary

OGDEN AIR LOGISTICS COMPLEX

- IFDIS was great investment amazing ROI
- Solving our intermittent / NFF circuit problem
- Reliability improvement greater than expected
- Reducing Air Force maintenance costs
- Expanding to other LRUs as rapidly as possible
- Currently have large enough IFDIS to test any LRU in the USAF inventory, as well as Joint Service LRUs

Questions?

OGDEN AIR LOGISTICS COMPLEX

