

Navy's First Intermittent Fault Detection & Isolation System (IFDIS)

Oct 27th, 2015

Presented to: JTEG

Presented by: Brett Gardner

Advanced Aircraft Technologies (AAT) FRCSW

16-0007 - Document is cleared for public release. Distribution is unlimited.

- Problem/Background
- Interim Solutions
- Current Solution(s)
 - a. Pros
 - b. Cons
- Main Issues/Concerns w/Current Technology
 - a. Cost
 - b. What is does well
 - c. What it doesn't do well

Background

- Intermittent / No fault found (NFF / A799) circuit problem with all Navy WRAs chassis
 - No way to reliably detect intermittent faults- currently technology it would take hundreds of hours to fully test a unit for intermittent faults using conventional technology – making current test sets unsuitable for intermittent testing
 - Difficult to conduct Engineering Investigations (EIs) when Intermittent chassis faults can not be eliminated from the equation
 - Bad actors due to Intermittent Fault continue to grow in the Navy Inventory
- AAT team from FRCSW visited Ogden Air Force Depot and was introduced to IFDIS technology as used on the F16 radar repair line
- Generator Convertor Unit (GCU) consistently appears on the top degrader list
 - GCU chassis currently verified with conventional continuity testers provided limited results – intermittent connections continued to be an issue although we could not prove that they were because we could not reliably detect them
 - Intermittent circuit detection extremely limited using conventional tester
- IFDIS technology was investigated by AAT 2010 and the idea was born to test the GCU at TQS facility in Ogden
- NAVSUP funded GCU/IFDIS test demonstration to determine if intermittent contact was an issue for the GCU

Test Demonstration- GCU Chassis

Test Demonstration - GCU Intermittent Wire

IFDIS precisely detected and isolated one or more intermittent circuits in 80% of the GCUs tested

- Selected (5) Ready For Use (RFU) GCUs chassis for IFDIS testing
- IFDIS detected and isolated intermittent circuits in 80% of the RFU GCU Chassis

- FRCSW uses DIT-MCO, Eclypse, digital and analog multi-meters testers to isolate opens, shorts, and miswires.
 - This technology is not useful in detecting intermittent faults
 - FRC was unknowingly building back up chassis with intermittent faults and returning them to the Fleet

- FRCSW, through coordination with COMFRC, has purchased an IFDIS system and three separate GCU IDs (G1, G2, and G3) via the Depots Capitol Improvement Program (CIP).
 - IFDIS to be installed October December 2015
 - Training to be conducted January February 2016.
 - Local Engineering Specification to be released by engineering to direct GCU chassis onto IFDIS test bench
 - Follow-on WRAs in work for future testing, suggested WRAs are APG-65/73 RADAR and various cockpit displays
 - RIF topic white paper submitted to Navy by Universal Synaptics for (1) IFDIS test set and three (yet to be determined) ID's to be built for COMFRC

- Pros
 - Will eliminate GCU bad actors that are due to intermittent chassis within the Fleet
 - Testing is short duration; approximately 1 hour, relatively inexpensive for the gain in reliability
 - Will improve reliability of GCU- increased Time on Wing (TOW) due to reduced A799.
 - Programming of chassis is simplistic self learning
 - IFDIS Identifies the exact circuit path that is faulty making repair relatively straight forward
 - Improves FRCSW GCU quality.

- Cons
 - Unit is costly \$\$ no efficiency of purchase for the Government for the multiple units we have purchased, (2) @ at Ogden, (I) at FRC SW
 - Originally thought that building IDs could be done organically but – it has taken 9 months to design and build the 3 GCU ID's at significant cost
 - Possible solution is to stand up organic ID build capability at IDATS lab in Lakehurst
 - No high voltage testing
 - Capturing of intermittent waveforms is not automatic, waveforms must be captured manually

- Cost
 - As mentioned in the previous slide, the system is expensive:
 - Suggest buying multiple units to reduce cost per contract.
 - ID's are expensive Suggest developing Organic capability
- What it does well:
 - Quickly identifies intermittent faults
 - Identifies opens, shorts, and miswires in seconds
 - Identifies approximately 95 % of intermittent faults in a one axis test
 - To obtain 99% detection, the other two axis tests must be completed – tripling testing time(3 hours)- Still extremely fast (magnitudes of order better) compared to the other testers out on the market

Questions?

Intermittent

Intermittent Examples

Intermittent Examples

*Note – Conventional ATE scanning measurement window must perfectly synchronize with fault at the precise moment the fault occurs or the fault is missed completely, the result is No Fault Found.

